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Abstract

Boosting combines weak classifiers to form highly accurate predictors. Although the case of binary

classification is well understood, in the multiclass setting, the “correct” requirements on the weak

classifier, or the notion of the most efficient boosting algorithms are missing. In this paper, we

create a broad and general framework, within which we make precise and identify the optimal

requirements on the weak-classifier, as well as design the most effective, in a certain sense, boosting

algorithms that assume such requirements.
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1. Introduction

Boosting (Schapire and Freund, 2012) refers to a general technique of combining rules of thumb,

or weak classifiers, to form highly accurate combined classifiers. Minimal demands are placed

on the weak classifiers, so that a variety of learning algorithms, also called weak-learners, can be

employed to discover these simple rules, making the algorithm widely applicable. The theory of

boosting is well-developed for the case of binary classification. In particular, the exact requirements

on the weak classifiers in this setting are known: any algorithm that predicts better than random

on any distribution over the training set is said to satisfy the weak learning assumption. Further,

boosting algorithms that minimize loss as efficiently as possible have been designed. Specifically,

it is known that the Boost-by-majority (Freund, 1995) algorithm is optimal in a certain sense, and

that AdaBoost (Freund and Schapire, 1997) is a practical approximation.

Such an understanding would be desirable in the multiclass setting as well, since many natural

classification problems involve more than two labels, for example, recognizing a digit from its

image, natural language processing tasks such as part-of-speech tagging, and object recognition in

vision. However, for such multiclass problems, a complete theoretical understanding of boosting is

lacking. In particular, we do not know the “correct” way to define the requirements on the weak

classifiers, nor has the notion of optimal boosting been explored in the multiclass setting.

Straightforward extensions of the binary weak-learning condition to multiclass do not work.

Requiring less error than random guessing on every distribution, as in the binary case, turns out to

be too weak for boosting to be possible when there are more than two labels. On the other hand,
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requiring more than 50% accuracy even when the number of labels is much larger than two is too

stringent, and simple weak classifiers like decision stumps fail to meet this criterion, even though

they often can be combined to produce highly accurate classifiers (Freund and Schapire, 1996a).

The most common approaches so far have relied on reductions to binary classification (Allwein

et al., 2000), but it is hardly clear that the weak-learning conditions implicitly assumed by such

reductions are the most appropriate.

The purpose of a weak-learning condition is to clarify the goal of the weak-learner, thus aiding

in its design, while providing a specific minimal guarantee on performance that can be exploited by

a boosting algorithm. These considerations may significantly impact learning and generalization be-

cause knowing the correct weak-learning conditions might allow the use of simpler weak classifiers,

which in turn can help prevent overfitting. Furthermore, boosting algorithms that more efficiently

and effectively minimize training error may prevent underfitting, which can also be important.

In this paper, we create a broad and general framework for studying multiclass boosting that

formalizes the interaction between the boosting algorithm and the weak-learner. Unlike much, but

not all, of the previous work on multiclass boosting, we focus specifically on the most natural, and

perhaps weakest, case in which the weak classifiers are genuine classifiers in the sense of predicting

a single multiclass label for each instance. Our new framework allows us to express a range of

weak-learning conditions, both new ones and most of the ones that had previously been assumed

(often only implicitly). Within this formalism, we can also now finally make precise what is meant

by correct weak-learning conditions that are neither too weak nor too strong.

We focus particularly on a family of novel weak-learning conditions that have an especially

appealing form: like the binary conditions, they require performance that is only slightly better than

random guessing, though with respect to performance measures that are more general than ordinary

classification error. We introduce a whole family of such conditions since there are many ways of

randomly guessing on more than two labels, a key difference between the binary and multiclass

settings. Although these conditions impose seemingly mild demands on the weak-learner, we show

that each one of them is powerful enough to guarantee boostability, meaning that some combination

of the weak classifiers has high accuracy. And while no individual member of the family is necessary

for boostability, we also show that the entire family taken together is necessary in the sense that for

every boostable learning problem, there exists one member of the family that is satisfied. Thus, we

have identified a family of conditions which, as a whole, is necessary and sufficient for multiclass

boosting. Moreover, we can combine the entire family into a single weak-learning condition that is

necessary and sufficient by taking a kind of union, or logical OR, of all the members. This combined

condition can also be expressed in our framework.

With this understanding, we are able to characterize previously studied weak-learning condi-

tions. In particular, the condition implicitly used by AdaBoost.MH (Schapire and Singer, 1999),

which is based on a one-against-all reduction to binary, turns out to be strictly stronger than nec-

essary for boostability. This also applies to AdaBoost.M1 (Freund and Schapire, 1996a), the most

direct generalization of AdaBoost to multiclass, whose conditions can be shown to be equivalent

to those of AdaBoost.MH in our setting. On the other hand, the condition implicit to the SAMME

algorithm by Zhu et al. (2009) is too weak in the sense that even when the condition is satisfied, no

boosting algorithm can guarantee to drive down the training error. Finally, the condition implicit to

AdaBoost.MR (Schapire and Singer, 1999; Freund and Schapire, 1996a) (also called AdaBoost.M2)

turns out to be exactly necessary and sufficient for boostability.
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Employing proper weak-learning conditions is important, but we also need boosting algorithms

that can exploit these conditions to effectively drive down error. For a given weak-learning condi-

tion, the boosting algorithm that drives down training error most efficiently in our framework can

be understood as the optimal strategy for playing a certain two-player game. These games are non-

trivial to analyze. However, using the powerful machinery of drifting games (Freund and Opper,

2002; Schapire, 2001), we are able to compute the optimal strategy for the games arising out of each

weak-learning condition in the family described above. Compared to earlier work, our optimality

results hold more generally and also achieve tighter bounds. These optimal strategies have a natu-

ral interpretation in terms of random walks, a phenomenon that has been observed in other settings

(Abernethy et al., 2008; Freund, 1995).

We also analyze the optimal boosting strategy when using the minimal weak learning condition,

and this poses additional challenges. Firstly, the minimal weak learning condition has multiple nat-

ural formulations—for example, as the union of all the conditions in the family described above, or

the formulation used in AdaBoost.MR—and each formulation leading to a different game specifica-

tion. A priori, it is not clear which game would lead to the best strategy. We resolve this dilemma by

proving that the optimal strategies arising out of different formulations of the same weak learning

condition lead to algorithms that are essentially equally good, and therefore we are free to choose

whichever formulation leads to an easier analysis without fear of suffering in performance. We

choose the union of conditions formulation, since it leads to strategies that share the same inter-

pretation in terms of random walks as before. However, even with this choice, the resulting games

are hard to analyze, and although we can explicitly compute the optimum strategies in general, the

computational complexity is usually exponential in the number of classes. Nevertheless, we identify

key situations under which efficient computation is possible.

The game-theoretic strategies are non-adaptive in that they presume prior knowledge about the

edge, that is, how much better than random are the weak classifiers. Algorithms that are adaptive,

such as AdaBoost, are much more practical because they do not require such prior information.

We show therefore how to derive an adaptive boosting algorithm by modifying the game-theoretic

strategy based on the minimal condition. This algorithm enjoys a number of theoretical guarantees.

Unlike some of the non-adaptive strategies, it is efficiently computable, and since it is based on the

minimal weak learning condition, it makes minimal assumptions. In fact, whenever presented with

a boostable learning problem, this algorithm can approach zero training error at an exponential rate.

More importantly, the algorithm is effective even beyond the boostability framework. In particular,

we show empirical consistency, that is, the algorithm always converges to the minimum of a certain

exponential loss over the training data, whether or not the data set is boostable. Furthermore, using

the results in Mukherjee et al. (2011) we can show that this convergence occurs rapidly.

Our focus in this paper is only on minimizing training error, which, for the algorithms we derive,

provably decreases exponentially fast with the number of rounds of boosting under boostability

assumptions. Such results can be used in turn to derive bounds on the generalization error using

standard techniques that have been applied to other boosting algorithms (Schapire et al., 1998;

Freund and Schapire, 1997; Koltchinskii and Panchenko, 2002). Consistency in the multiclass

classification setting has been studied by Tewari and Bartlett (2007) and has been shown to be

trickier than binary classification consistency. Nonetheless, by following the approach in Bartlett

and Traskin (2007) for showing consistency in the binary setting, we are able to extend the empirical

consistency guarantees to general consistency guarantees in the multiclass setting: we show that

439



MUKHERJEE AND SCHAPIRE

under certain conditions and with sufficient data, our adaptive algorithm approaches the Bayes-

optimum error on the test data set.

We present experiments aimed at testing the efficacy of the adaptive algorithm when working

with a very weak weak-learner to check that the conditions we have identified are indeed weaker

than others that had previously been used. We find that our new adaptive strategy achieves low

test error compared to other multiclass boosting algorithms which usually heavily underfit. This

validates the potential practical benefit of a better theoretical understanding of multiclass boosting.

1.1 Previous Work

The first boosting algorithms were given by Schapire (1990) and Freund (1995), followed by their

AdaBoost algorithm (Freund and Schapire, 1997). Multiclass boosting techniques include Ada-

Boost.M1 and AdaBoost.M2 (Freund and Schapire, 1997), as well as AdaBoost.MH and Ada-

Boost.MR (Schapire and Singer, 1999). Other approaches include the work by Eibl and Pfeiffer

(2005) and Zhu et al. (2009). There are also more general approaches that can be applied to boosting

including Allwein et al. (2000), Beygelzimer et al. (2009), Dietterich and Bakiri (1995), Hastie and

Tibshirani (1998) and Li (2010). Two game-theoretic perspectives have been applied to boosting.

The first one (Freund and Schapire, 1996b; Rätsch and Warmuth, 2005) views the weak-learning

condition as a minimax game, while drifting games (Schapire, 2001; Freund, 1995) were designed

to analyze the most efficient boosting algorithms. These games have been further analyzed in the

multiclass and continuous time setting in Freund and Opper (2002).

2. Framework

We introduce some notation. Unless otherwise stated, matrices will be denoted by bold capital

letters like M, and vectors by bold small letters like v. Entries of a matrix and vector will be

denoted as M(i, j) or v(i), while M(i) will denote the ith row of a matrix. The inner product of two

vectors u,v is denoted by 〈u,v〉. The Frobenius inner product Tr(AB′) of two matrices A,B will

be denoted by A•B′, where B′ is the transpose of B. The indicator function is denoted by 1 [·]. The

set of all distributions over the set {1, . . . ,k} will be denoted by ∆{1, . . . ,k}, and in general, the set

of all distributions over any set S will be denoted by ∆(S).

In multiclass classification, we want to predict the labels of examples lying in some set X . We

are provided a training set of labeled examples {(x1,y1), . . . ,(xm,ym)}, where each example xi ∈ X

has a label yi in the set {1, . . . ,k}.

Boosting combines several mildly powerful predictors, called weak classifiers, to form a highly

accurate combined classifier, and has been previously applied for multiclass classification. In this

paper, we only allow weak classifiers that predict a single class for each example. This is appealing,

since the combined classifier has the same form, although it differs from what has been used in

much previous work. Later we will expand our framework to include multilabel weak classifiers,

that may predict multiple labels per example.

We adopt a game-theoretic view of boosting. A game is played between two players, Booster

and Weak-Learner, for a fixed number of rounds T . With binary labels, Booster outputs a distribu-

tion in each round, and Weak-Learner returns a weak classifier achieving more than 50% accuracy

on that distribution. The multiclass game is an extension of the binary game. In particular, in each

round t:
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• Booster creates a cost-matrix Ct ∈ Rm×k, specifying to Weak-Learner that the cost of classi-

fying example xi as l is Ct(i, l). The cost-matrix may not be arbitrary, but should conform to

certain restrictions as discussed below.

• Weak-Learner returns some weak classifier ht : X → {1, . . . ,k} from a fixed space ht ∈ H so

that the cost incurred is

Ct •1ht
=

m

∑
i=1

Ct(i,ht(xi)),

is “small enough”, according to some conditions discussed below. Here by 1h we mean the

m× k matrix whose (i, j)-th entry is 1 [h(i) = j].

• Booster computes a weight αt for the current weak classifier based on how much cost was

incurred in this round.

At the end, Booster predicts according to the weighted plurality vote of the classifiers returned

in each round:

H(x)
△

= argmax
l∈{1,...,k}

fT (x, l), where fT (x, l)
△

=
T

∑
t=1

1 [ht(x) = l]αt . (1)

By carefully choosing the cost matrices in each round, Booster aims to minimize the training error

of the final classifier H, even when Weak-Learner is adversarial. The restrictions on cost-matrices

created by Booster, and the maximum cost Weak-Learner can suffer in each round, together define

the weak-learning condition being used. For binary labels, the traditional weak-learning condition

states: for any non-negative weights w(1), . . . ,w(m) on the training set, the error of the weak classi-

fier returned is at most (1/2− γ/2)∑i wi. Here γ parametrizes the condition. There are many ways

to translate this condition into our language. The one with fewest restrictions on the cost-matrices

requires labeling correctly should be less costly than labeling incorrectly:

∀i : C(i,yi)≤C(i, ȳi) (here ȳi 6= yi is the other binary label),

while the restriction on the returned weak classifier h requires less cost than predicting randomly:

∑
i

C(i,h(xi))≤ ∑
i

{(
1

2
− γ

2

)
C(i, ȳi)+

(
1

2
+

γ

2

)
C(i,yi)

}
.

By the correspondence w(i) =C(i, ȳi)−C(i,yi), we may verify the two conditions are the same.

We will rewrite this condition after making some simplifying assumptions. Henceforth, without

loss of generality, we assume that the true label is always 1. Let C bin ⊆ Rm×2 consist of matri-

ces C which satisfy C(i,1) ≤ C(i,2). Further, let Ubin
γ ∈ Rm×2 be the matrix whose each row is

(1/2+ γ/2,1/2− γ/2). Then, Weak-Learner searching space H satisfies the binary weak-learning

condition if: ∀C ∈ C bin,∃h ∈ H : C •
(
1h −Ubin

γ

)
≤ 0. There are two main benefits to this refor-

mulation. With linear homogeneous constraints, the mathematics is simplified, as will be apparent

later. More importantly, by varying the restrictions C bin on the cost vectors and the matrix Ubin, we

can generate a vast variety of weak-learning conditions for the multiclass setting k ≥ 2 as we now

show.
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Let C ⊆Rm×k and let B ∈Rm×k be a matrix which we call the baseline. We say a weak classifier

space H satisfies the condition (C ,B) if

∀C ∈ C ,∃h ∈ H : C• (1h −B)≤ 0, i.e.,
m

∑
i=1

C(i,h(i))≤
m

∑
i=1

〈C(i),B(i)〉 . (2)

In (2), the variable matrix C specifies how costly each misclassification is, while the baseline B

specifies a weight for each misclassification. The condition therefore states that a weak classi-

fier should not exceed the average cost when weighted according to baseline B. This large class

of weak-learning conditions captures many previously used conditions, such as the ones used by

AdaBoost.M1 (Freund and Schapire, 1996a), AdaBoost.MH (Schapire and Singer, 1999) and Ada-

Boost.MR (Freund and Schapire, 1996a; Schapire and Singer, 1999) (see below), as well as novel

conditions introduced in the next section.

By studying this vast class of weak-learning conditions, we hope to find the one that will serve

the main purpose of the boosting game: finding a convex combination of weak classifiers that has

zero training error. For this to be possible, at the minimum the weak classifiers should be sufficiently

rich for such a perfect combination to exist. Formally, a collection H of weak classifiers is boostable

if it is eligible for boosting in the sense that there exists a weighting λ on the votes forming a

distribution that linearly separates the data: ∀i : argmaxl∈{1,...,k} ∑h∈H λ(h)1 [h(xi) = l] = yi. The

weak-learning condition plays two roles. It rejects spaces that are not boostable, and provides an

algorithmic means of searching for the right combination. Ideally, the second factor will not cause

the weak-learning condition to impose additional restrictions on the weak classifiers; in that case,

the weak-learning condition is merely a reformulation of being boostable that is more appropriate

for deriving an algorithm. In general, it could be too strong, that is, certain boostable spaces will fail

to satisfy the conditions. Or it could be too weak, that is, non-boostable spaces might satisfy such

a condition. Booster strategies relying on either of these conditions will fail to drive down error,

the former due to underfitting, and the latter due to overfitting. Later we will describe conditions

captured by our framework that avoid being too weak or too strong. But before that, we show in

the next section how our flexible framework captures weak learning conditions that have appeared

previously in the literature.

3. Old Conditions

In this section, we rewrite, in the language of our framework, the weak learning conditions ex-

plicitly or implicitly employed in the multiclass boosting algorithms SAMME (Zhu et al., 2009),

AdaBoost.M1 (Freund and Schapire, 1996a), and AdaBoost.MH and AdaBoost.MR (Schapire and

Singer, 1999). This will be useful later on for comparing the strengths and weaknesses of the var-

ious conditions. We will end this section with a curious equivalence between the conditions of

AdaBoost.MH and AdaBoost.M1.

Recall that we have assumed the correct label is 1 for every example. Nevertheless, we continue

to use yi to denote the correct label in this section.

3.1 Old Conditions in the New Framework

Here we restate, in the language of our new framework, the weak learning conditions of four algo-

rithms that have earlier appeared in the literature.
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3.1.1 SAMME

The SAMME algorithm (Zhu et al., 2009) requires less error than random guessing on any distribu-

tion on the examples. Formally, a space H satisfies the condition if there is a γ′ > 0 such that,

∀d(1), . . . ,d(m)≥ 0,∃h ∈ H :
m

∑
i=1

d(i)1 [h(xi) 6= yi]≤ (1−1/k− γ′)
m

∑
i=1

d(i). (3)

Define a cost matrix C whose entries are given by

C(i, j) =

{
d(i) if j 6= yi,

0 if j = yi.

Then the left hand side of (3) can be written as

m

∑
i=1

C(i,h(xi)) = C•1h.

Next let γ = (k/(k−1))γ′ and define baseline Uγ to be the multiclass extension of Ubin,

Uγ(i, l) =

{
(1−γ)

k
+ γ if l = yi,

(1−γ)
k

if l 6= yi.

Then notice that for each i, we have

〈
C(i),Uγ(i)

〉
= ∑

l 6=yi

C(i, l)Uγ(i, l)

= (k−1)
(1− γ)

k
d(i)

=

(
1− 1

k
−
(

1− 1

k

)
γ

)
d(i)

=

(
1− 1

k
− γ′
)

d(i).

Therefore, the right hand side of (3) can be written as

m

∑
i=1

∑
l 6=yi

C(i, l)Uγ(i, l) = C•Uγ,

since C(i,yi) = 0 for every example i. Define C SAM to be the following collection of cost matrices:

C SAM △

=

{
C : C(i, l) =

{
0 if l = yi,

ti if l 6= yi,
for non-negative t1, . . . , tm.

}

Using the last two equations, (3) is equivalent to

∀C ∈ C SAM,∃h ∈ H : C•
(
1h −Uγ

)
≤ 0.

Therefore, the weak-learning condition of SAMME is given by (C SAM,Uγ).
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3.1.2 ADABOOST.M1

AdaBoost.M1 (Freund and Schapire, 1997) measures the performance of weak classifiers using or-

dinary error. It requires 1/2+γ/2 accuracy with respect to any non-negative weights d(1), . . . ,d(m)
on the training set:

m

∑
i=1

d(i)1 [h(xi) 6= yi] ≤ (1/2− γ/2)
m

∑
i=1

d(i), (4)

i.e.,
m

∑
i=1

d(i)Jh(xi) 6= yiK ≤ −γ
m

∑
i=1

d(i).

where J·K is the ±1 indicator function, taking value +1 when its argument is true, and −1 when

false. Using the transformation

C(i, l) = Jl 6= yiKd(i)

we may rewrite (4) as

∀C ∈ Rm×k satisfying 0 ≤−C(i,yi) =C(i, l) for l 6= yi, (5)

∃h ∈ H :
m

∑
i=1

C(i,h(xi))≤ γ
m

∑
i=1

C(i,yi)

i.e., ∀C ∈ C M1,∃h ∈ H : C•
(
1h −BM1

γ

)
≤ 0,

where BM1
γ (i, l) = γ1 [l = yi], and C M1 ⊆ Rm×k consists of matrices satisfying the constraints in (5).

3.1.3 ADABOOST.MH

AdaBoost.MH (Schapire and Singer, 1999) is a popular multiclass boosting algorithm that is based

on the one-against-all reduction, and was originally designed to use weak-hypotheses that return a

prediction for every example and every label. The implicit weak learning condition requires that for

any matrix with non-negative entries d(i, l), the weak-hypothesis should achieve 1/2+ γ accuracy

m

∑
i=1

{
1 [h(xi) 6= yi]d(i,yi)+ ∑

l 6=yi

1 [h(xi) = l]d(i, l)

}
≤

(
1

2
− γ

2

)
m

∑
i=1

k

∑
l=1

d(i, l).

(6)

This can be rewritten as

m

∑
i=1

{
−1 [h(xi) = yi]d(i,yi)+ ∑

l 6=yi

1 [h(xi) = l]d(i, l)

}

≤
m

∑
i=1

{(
1

2
− γ

2

)
∑
l 6=yi

d(i, l)−
(

1

2
+

γ

2

)
d(i,yi)

}
.

Using the mapping

C(i, l) =

{
d(i, l) if l 6= yi

−d(i, l) if l = yi,

444



A THEORY OF MULTICLASS BOOSTING

their weak-learning condition may be rewritten as follows

∀C ∈ R
m×k satisfying C(i,yi)≤ 0,C(i, l)≥ 0 for l 6= yi, (7)

∃h ∈ H :

summ
i=1C(i,h(xi))≤

m

∑
i=1

{(
1

2
+

γ

2

)
C(i,yi)+

(
1

2
− γ

2

)
∑
l 6=yi

C(i, l)

}
.

Defining C MH to be the space of all cost matrices satisfying the constraints in (7), the above condi-

tion is the same as

∀C ∈ C MH,∃h ∈ H : C•
(
1h −BMH

γ

)
≤ 0,

where BMH
γ (i, l) = (1/2+ γJl = yiK/2).

3.1.4 ADABOOST.MR

AdaBoost.MR (Schapire and Singer, 1999) is based on the all-pairs multiclass to binary reduction.

Like AdaBoost.MH, it was originally designed to use weak-hypotheses that return a prediction for

every example and every label. The weak learning condition for AdaBoost.MR requires that for any

non-negative cost-vectors {d(i, l)}l 6=yi
, the weak-hypothesis returned should satisfy the following:

m

∑
i=1

∑
l 6=yi

(1 [h(xi) = l]−1 [h(xi) = yi])d(i, l) ≤ −γ
m

∑
i=1

∑
l 6=yi

d(i, l)

i.e.,
m

∑
i=1

{
−1 [h(xi) = yi] ∑

l 6=yi

d(i, l)+ ∑
l 6=yi

1 [h(xi) = l]d(i, l)

}
≤ −γ

m

∑
i=1

∑
l 6=yi

d(i, l).

Substituting

C(i, l) =

{
d(i, l) l 6= yi

−∑l 6=yi
d(i, l) l = yi,

we may rewrite AdaBoost.MR’s weak-learning condition as

∀C ∈ R
m×k satisfying C(i, l)≥ 0 for l 6= yi,C(i,yi) =− ∑

l 6=yi

C(i, l), (8)

∃h ∈ H :
m

∑
i=1

C(i,h(xi))≤− γ

2

m

∑
i=1

{
−C(i,yi)+ ∑

l 6=yi

C(i, l)

}
.

Defining C MR to be the collection of cost matrices satisfying the constraints in (8), the above con-

dition is the same as

∀C ∈ C MR,∃h ∈ H : C•
(
1h −BMR

γ

)
≤ 0,

where BMR
γ (i, l) = Jl = yiKγ/2.

3.2 A Curious Equivalence

We show that the weak learning conditions of AdaBoost.MH and AdaBoost.M1 are identical in our

framework. This is surprising because the original motivations behind these algorithms were com-

pletely different. AdaBoost.M1 is a direct extension of binary AdaBoost to the multiclass setting,
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whereas AdaBoost.MH is based on the one-against-all multiclass to binary reduction. This equiva-

lence is a sort of degeneracy, and arises because the weak classifiers being used predict single labels

per example. With multilabel weak classifiers, for which AdaBoost.MH was originally designed,

the equivalence no longer holds.

The proofs in this and later sections will make use of the following minimax result, that is a

weaker version of Corollary 37.3.2 of Rockafellar (1970).

Theorem 1 (Minimax Theorem) Let C,D be non-empty closed convex subsets of Rm,Rn respec-

tively, and let K be a linear function on C×D. If either C or D is bounded, then

min
v∈D

max
u∈C

K(u,v) = max
u∈C

min
v∈D

K(u,v).

Lemma 2 A weak classifier space H satisfies (C M1,BM1
γ ) if and only if it satisfies (C MH,BMH

γ ).

Note that C M1 and C MH depend implicitly on the training set. This lemma is valid for all training

sets.

Proof We will refer to (C M1,BM1
γ ) by M1 and (C MH,BMH

γ ) by MH for brevity. The proof is in three

steps.

Step (i): If H satisfies MH, then it also satisfies M1. This follows since any constraint (4)

imposed by M1 on H can be reproduced by MH by plugging the following values of d(i, l) in (6)

d(i, l) =

{
d(i) if l = yi

0 if l 6= yi.

Step (ii): If H satisfies M1, then there is a convex combination Hλ∗ of the matrices 1h ∈ H ,

defined as

Hλ∗
△

= ∑
h∈H

λ∗(h)1h,

such that

∀i :
(
Hλ∗ −BM1

γ

)
(i, l)

{
≥ 0 if l = yi

≤ 0 if l 6= yi.
(9)

Indeed, Theorem 1 yields

min
λ∈∆(H )

max
C∈C M1

C•
(
Hλ−BM1

γ

)
= max

C∈C M1
min
h∈H

C•
(
1h −BM1

γ

)
≤ 0, (10)

where the inequality is a restatement of our assumption that H satisfies M1. If λ∗ is a minimizer of

the minimax expression, then Hλ∗ must satisfy

∀i : Hλ∗(i, l)

{
≥ 1

2
+ γ

2
if l = yi

≤ 1
2
− γ

2
if l 6= yi,

(11)

or else some choice of C∈ C M1 can cause C•
(
Hλ∗ −BM1

γ

)
to exceed 0. In particular, if Hλ∗(i0, l)<

1/2+ γ/2, then (
Hλ∗ −BM1

γ

)
(i0,yi0)< ∑

l 6=yi0

(
Hλ∗ −BM1

γ

)
(i0, l).
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Now, if we choose C ∈ C M1 as

C(i, l) =





0 if i 6= i0

1 if i = i0, l 6= yi0

−1 if i = i0, l = yi0 ,

then,

C•
(
Hλ∗ −BM1

γ

)
=−

(
Hλ∗ −BM1

γ

)
(i0,yi0)+ ∑

l 6=yi0

(
Hλ∗ −BM1

γ

)
(i0, l)> 0,

contradicting the inequality in (10). Therefore (11) holds. Equation (9), and thus Step (ii), now

follows by observing that BMH
γ , by definition, satisfies

∀i : BMH
γ (i, l) =

{
1
2
+ γ

2
if l = yi

1
2
− γ

2
if l 6= yi.

Step (iii) If there is some convex combination Hλ∗ satisfying (9), then H satisfies MH. Recall

that BMH consists of entries that are non-positive on the correct labels and non-negative for incorrect

labels. Therefore, (9) implies

0 ≥ max
C∈C MH

C•
(
Hλ∗ −BMH

γ

)
≥ min

λ∈∆(H )
max

C∈C MH
C•
(
Hλ−BMH

γ

)
.

On the other hand, using Theorem 1 we have

min
λ∈∆(H )

max
C∈C MH

C•
(
Hλ−BMH

γ

)
= max

C∈C MH
min
h∈H

C•
(
1h −BMH

γ

)
.

Combining the two, we get

0 ≥ max
C∈C MH

min
h∈H

C•
(
1h −BMH

γ

)
,

which is the same as saying that H satisfies MH’s condition.

Steps (ii) and (iii) together imply that if H satisfies M1, then it also satisfies MH. Along with

Step (i), this concludes the proof.

4. Necessary and Sufficient Weak-learning Conditions

The binary weak-learning condition has an appealing form: for any distribution over the examples,

the weak classifier needs to achieve error not greater than that of a random player who guesses the

correct answer with probability 1/2+γ/2. Further, this is the weakest condition under which boost-

ing is possible as follows from a game-theoretic perspective (Freund and Schapire, 1996b; Rätsch

and Warmuth, 2005) . Multiclass weak-learning conditions with similar properties are missing in

the literature. In this section we show how our framework captures such conditions.
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4.1 Edge-over-random Conditions

In the multiclass setting, we model a random player as a baseline predictor B ∈ Rm×k whose rows

are distributions over the labels, B(i) ∈ ∆{1, . . . ,k}. The prediction on example i is a sample from

B(i). We only consider the space of edge-over-random baselines Beor
γ ⊆Rm×k who have a faint clue

about the correct answer. More precisely, any baseline B ∈ Beor
γ in this space is γ more likely to

predict the correct label than an incorrect one on every example i: ∀l 6= 1,B(i,1)≥ B(i, l)+ γ, with

equality holding for some l, that is:

B(i,1) = max{B(i, l)+ γ : l 6= 1} .

Notice that the edge-over-random baselines are different from the baselines used by earlier weak

learning conditions discussed in the previous section.

When k = 2, the space Beor
γ consists of the unique player Ubin

γ , and the binary weak-learning con-

dition is given by (C bin,Ubin
γ ). The new conditions generalize this to k > 2. In particular, define C eor

to be the multiclass extension of C bin: any cost-matrix in C eor should put the least cost on the cor-

rect label, that is, the rows of the cost-matrices should come from the set
{

c ∈ Rk : ∀l,c(1)≤ c(l)
}

.

Then, for every baseline B ∈ Beor
γ , we introduce the condition (C eor,B), which we call an edge-

over-random weak-learning condition. Since C •B is the expected cost of the edge-over-random

baseline B on matrix C, the constraints (2) imposed by the new condition essentially require better

than random performance.

Also recall that we have assumed that the true label yi of example i in our training set is always

1. Nevertheless, we may occasionally continue to refer to the true labels as yi.

We now present the central results of this section. The seemingly mild edge-over-random con-

ditions guarantee boostability, meaning weak classifiers that satisfy any one such condition can be

combined to form a highly accurate combined classifier.

Theorem 3 (Sufficiency) If a weak classifier space H satisfies a weak-learning condition (C eor,B),
for some B ∈ Beor

γ , then H is boostable.

Proof The proof is in the spirit of the ones in Freund and Schapire (1996b). Applying Theorem 1

yields

0 ≥ max
C∈C eor

min
h∈H

C• (1h −B) = min
λ∈∆(H )

max
C∈C eor

C• (Hλ−B) ,

where the first inequality follows from the definition (2) of the weak-learning condition. Let λ∗ be a

minimizer of the min-max expression. Unless the first entry of each row of (Hλ∗ −B) is the largest,

the right hand side of the min-max expression can be made arbitrarily large by choosing C ∈ C eor

appropriately. For example, if in some row i, the jth
0 element is strictly larger than the first element,

by choosing

C(i, j) =





−1 if j = 1

1 if j = j0

0 otherwise,

we get a matrix in C eor which causes C• (Hλ∗ −B) to be equal to C(i, j0)−C(i,1)> 0, an impos-

sibility by the first inequality.

Therefore, the convex combination of the weak classifiers, obtained by choosing each weak

classifier with weight given by λ
∗, perfectly classifies the training data, in fact with a margin γ.
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On the other hand, the family of such conditions, taken as a whole, is necessary for boostability in

the sense that every eligible space of weak classifiers satisfies some edge-over-random condition.

Theorem 4 (Relaxed necessity) For every boostable weak classifier space H , there exists a γ > 0

and B ∈ Beor
γ such that H satisfies the weak-learning condition (C eor,B).

Proof The proof shows existence through non-constructive averaging arguments. We will reuse

notation from the proof of Theorem 3 above. H is boostable implies there exists some distribution

λ
∗ ∈ ∆(H ) such that

∀ j 6= 1, i : Hλ∗(i,1)−Hλ∗(i, j)> 0.

Let γ > 0 be the minimum of the above expression over all possible (i, j), and let B = Hλ∗ . Then

B ∈ Beor
γ , and

max
C∈C eor

min
h∈H

C• (1h −B)≤ min
λ∈∆(H )

max
C∈C eor

C• (Hλ−B)≤ max
C∈C eor

C• (Hλ∗ −B) = 0,

where the equality follows since by definition Hλ∗ −B = 0. The max-min expression is at most zero

is another way of saying that H satisfies the weak-learning condition (C eor,B) as in (2).

Theorem 4 states that any boostable weak classifier space will satisfy some condition in our family,

but it does not help us choose the right condition. Experiments in Section 10 suggest
(
C eor,Uγ

)
is

effective with very simple weak-learners compared to popular boosting algorithms. (Recall Uγ ∈
Beor

γ is the edge-over-random baseline closest to uniform; it has weight (1−γ)/k on incorrect labels

and (1 − γ)/k + γ on the correct label.) However, there are theoretical examples showing each

condition in our family is too strong.

Theorem 5 For any B ∈ Beor
γ , there exists a boostable space H that fails to satisfy the condition

(C eor,B).

Proof We provide, for any γ > 0 and edge-over-random baseline B ∈ Beor
γ , a data set and weak

classifier space that is boostable but fails to satisfy the condition (C eor,B).
Pick γ′ = γ/k and set m > 1/γ′ so that ⌊m(1/2+ γ′)⌋ > m/2. Our data set will have m labeled

examples {(0,y0), . . . ,(m−1,ym−1)}, and m weak classifiers. We want the following symmetries

in our weak classifiers:

• Each weak classifier correctly classifies ⌊m(1/2+ γ′)⌋ examples and misclassifies the rest.

• On each example, ⌊m(1/2+ γ′)⌋ weak classifiers predict correctly.

Note the second property implies boostability, since the uniform convex combination of all the weak

classifiers is a perfect predictor.

The two properties can be satisfied by the following design. A window is a contiguous sequence

of examples that may wrap around; for example

{i,(i+1) mod m, . . . ,(i+ k) mod m}

is a window containing k elements, which may wrap around if i+k ≥ m. For each window of length

⌊m(1/2+ γ′)⌋ create a hypothesis that correctly classifies within the window, and misclassifies out-

side. This weak-hypothesis space has size m, and has the required properties.

We still have flexibility as to how the misclassifications occur, and which cost-matrix to use,

which brings us to the next two choices:
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• Whenever a hypothesis misclassifies on example i, it predicts label

ŷi
△

= argmin{B(i, l) : l 6= yi} . (12)

• A cost-matrix is chosen so that the cost of predicting ŷi on example i is 1, but for any other

prediction the cost is zero. Observe this cost-matrix belongs to C eor.

Therefore, every time a weak classifier predicts incorrectly, it also suffers cost 1. Since each weak

classifier predicts correctly only within a window of length ⌊m(1/2+ γ′)⌋, it suffers cost ⌈m(1/2−
γ′)⌉. On the other hand, by the choice of ŷi in (12), and by our assumption that yi = 1, we have

B(i, ŷi) = min{B(i,1)− γ,B(i,2), . . . ,B(i,k)}

≤ 1

k
(B(i,1)− γ+B(i,2)+B(i,3)+ . . .+B(i,k))

= 1/k− γ/k.

So the cost of B on the chosen cost-matrix is at most m(1/k − γ/k), which is less than the cost

⌈m(1/2− γ′)⌉ ≥ m(1/2− γ/k) of any weak classifier whenever the number of labels k is more than

two. Hence our boostable space of weak classifiers fails to satisfy (C eor,B).

Theorems 4 and 5 can be interpreted as follows. While a boostable space will satisfy some edge-

over-random condition, without further information about the data set it is not possible to know

which particular condition will be satisfied. The kind of prior knowledge required to make this

guess correctly is provided by Theorem 3: the appropriate weak learning condition is determined

by the distribution of votes on the labels for each example that a target weak classifier combination

might be able to get. Even with domain expertise, such knowledge may or may not be obtainable in

practice before running boosting. We therefore need conditions that assume less.

4.2 The Minimal Weak Learning Condition

A perhaps extreme way of weakening the condition is by requiring the performance on a cost matrix

to be competitive not with a fixed baseline B ∈ Beor
γ , but with the worst of them:

∀C ∈ C eor,∃h ∈ H : C•1h ≤ max
B∈Beor

γ

C•B. (13)

Condition (13) states that during the course of the same boosting game, Weak-Learner may choose

to beat any edge-over-random baseline B ∈ Beor
γ , possibly a different one for every round and every

cost-matrix. This may superficially seem much too weak. On the contrary, this condition turns out

to be equivalent to boostability. In other words, according to our criterion, it is neither too weak nor

too strong as a weak-learning condition. However, unlike the edge-over-random conditions, it also

turns out to be more difficult to work with algorithmically.

Furthermore, this condition can be shown to be equivalent to the one used by AdaBoost.MR

(Schapire and Singer, 1999; Freund and Schapire, 1996a). This is perhaps remarkable since the

latter is based on the apparently completely unrelated all-pairs multiclass to binary reduction. In

Section 3 we saw that the MR condition is given by (C MR,BMR
γ ), where C MR consists of cost-

matrices that put non-negative costs on incorrect labels and whose rows sum up to zero, while

BMR
γ ∈ Rm×k is the matrix that has γ on the first column and −γ on all other columns. Further, the

MR condition, and hence (13), can be shown to be neither too weak nor too strong.
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Theorem 6 (MR) A weak classifier space H satisfies AdaBoost.MR’s weak-learning condition

(C MR,BMR
γ ) if and only if it satisfies (13). Moreover, this condition is equivalent to being boost-

able.

Proof We will show the following three conditions are equivalent:

(A) H is boostable

(B) ∃γ > 0 such that ∀C ∈ C eor,∃h ∈ H : C•1h ≤ max
B∈Beor

γ

C•B

(C) ∃γ > 0 such that ∀C ∈ C MR,∃h ∈ H : C•1h ≤ C•BMR.

We will show (A) implies (B), (B) implies (C), and (C) implies (A) to achieve the above.

(A) implies (B): Immediate from Theorem 4.

(B) implies (C): Suppose (B) is satisfied with 2γ. We will show that this implies H satisfies

(C MR,BMR
γ ). Notice C MR ⊂ C eor. Therefore it suffices to show that

∀C ∈ C MR,B ∈ Beor
2γ : C•

(
B−BMR

γ

)
≤ 0.

Notice that B ∈ Beor
2γ implies B′ = B−BMR

γ is a matrix whose largest entry in each row is in the first

column of that row. Then, for any C ∈ C MR, C•B′ can be written as

C•B′ =
m

∑
i=1

k

∑
j=2

C(i, j)
(
B′(i, j)−B′(i,1)

)
.

Since C(i, j)≥ 0 for j > 1, and B′(i, j)−B′(i,1)≤ 0, we have our result.

(C) implies (A): Applying Theorem 1

0 ≥ max
C∈C MR

min
h∈H

C•
(
1h −BMR

γ

)

≥ max
C∈C MR

min
λ∈∆(H )

C•
(
Hλ−BMR

γ

)

= min
λ∈∆(H )

max
C∈C MR

C•
(
Hλ−BMR

γ

)
.

For any i0 and l0 6= 1, the following cost-matrix C satisfies C ∈ C MR,

C(i, l) =





0 if i 6= i0 or l 6∈ {1, l0}
1 if i = i0, l = l0

−1 if i = i0, l = 1.

Let λ belong to the argmin of the minmax expression. Then C•
(
Hλ−BMR

γ

)
≤ 0 implies Hλ(i0,1)−

Hλ(i0, l0) ≥ 2γ. Since this is true for all i0 and l0 6= 1, we conclude that the (C MR,BMR
γ ) condition

implies boostability.

This concludes the proof of equivalence.

Next, we illustrate the strengths of our minimal weak-learning condition through concrete compar-

isons with previous algorithms.
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h1 h2

a 1 2

b 1 2

Figure 1: A weak classifier space which satisfies SAMME’s weak learning condition but is not

boostable.

4.2.1 COMPARISON WITH SAMME

The SAMME algorithm of Zhu et al. (2009) requires the weak classifiers to achieve less error

than uniform random guessing for multiple labels; in our language, their weak-learning condition

is (C SAM,Uγ), as shown in Section 3, where C SAM consists of cost matrices whose rows are of

the form (0, t, t, . . .) for some non-negative t. As is well-known, this condition is not sufficient

for boosting to be possible. In particular, consider the data set {(a,1),(b,2)} with k = 3,m = 2,

and a weak classifier space consisting of h1,h2 which always predict 1,2, respectively (Figure 1).

Since neither classifier distinguishes between a,b we cannot achieve perfect accuracy by combining

them in any way. Yet, due to the constraints on the cost-matrix, one of h1,h2 will always manage

non-positive cost while random always suffers positive cost. On the other hand our weak-learning

condition allows the Booster to choose far richer cost matrices. In particular, when the cost matrix

C ∈ C eor is given by

1 2 3

a −1 +1 0

b +1 −1 0,

both classifiers in the above example suffer more loss than the random player Uγ, and fail to satisfy

our condition.

4.2.2 COMPARISON WITH ADABOOST.MH

AdaBoost.MH (Schapire and Singer, 1999) was designed for use with weak hypotheses that on each

example return a prediction for every label. When used in our framework, where the weak classifiers

return only a single multiclass prediction per example, the implicit demands made by AdaBoost.MH

on the weak classifier space turn out to be too strong. We cannot use Theorem 5 to demonstrate

this, since it applies to only fixed edge-over-random conditions. Instead, we construct a classifier

space that satisfies the condition (C eor,Uγ) in our family, but cannot satisfy AdaBoost.MH’s weak-

learning condition. Note that this does not imply that the conditions are too strong when used with

more powerful weak classifiers that return multilabel multiclass predictions.

Consider a space H that has, for every (1/k+ γ)m element subset of the examples, a classifier

that predicts correctly on exactly those elements. The expected loss of a randomly chosen classifier

from this space is the same as that of the random player Uγ. Hence H satisfies this weak-learning

condition. On the other hand, it was shown in Section 3 that AdaBoost.MH’s weak-learning con-

dition is the pair (C MH,BMH
γ ), where C MH consists of cost matrices with non-negative entries on

incorrect labels and non-positive entries on real labels, and where each row of the matrix BMH
γ is

the vector (1/2+γ/2,1/2−γ/2, . . . ,1/2−γ/2). A quick calculation shows that for any h ∈ H , and
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C ∈ C MH with −1 in the first column and zeroes elsewhere, C •
(
1h −BMH

γ

)
= 1/2− 1/k. This is

positive when k > 2, so that H fails to satisfy AdaBoost.MH’s condition.

We have seen how our framework allows us to capture the strengths and weaknesses of old con-

ditions, describe a whole new family of conditions and also identify the condition making minimal

assumptions. In the next few sections, we show how to design boosting algorithms that employ

these new conditions and enjoy strong theoretical guarantees.

5. Algorithms

In this section we devise algorithms by analyzing the boosting games that employ weak-learning

conditions in our framework. We compute the optimum Booster strategy against a completely

adversarial Weak-Learner, which here is permitted to choose weak classifiers without restriction,

that is, the entire space H all of all possible functions mapping examples to labels. By modeling

Weak-Learner adversarially, we make absolutely no assumptions on the algorithm it might use.

Hence, error guarantees enjoyed in this situation will be universally applicable. Our algorithms

are derived from the very general drifting games framework (Schapire, 2001) for solving boosting

games, which in turn was inspired by Freund’s Boost-by-majority algorithm (Freund, 1995), which

we review next.

5.1 The OS Algorithm

Fix the number of rounds T and a weak-learning condition (C ,B). We will only consider conditions

that are not vacuous, that is, at least some classifier space satisfies the condition, or equivalently, the

space H all satisfies (C ,B). Additionally, we assume the constraints placed by C are on individual

rows. In other words, there is some subset C0 ⊆ Rk of all possible rows, such that a cost matrix C

belongs to the collection C if and only if each of its rows belongs to this subset:

C ∈ C ⇐⇒ ∀i : C(i) ∈ C0. (14)

Further, we assume C0 forms a convex cone, that is, c,c′ ∈ C0 implies tc+ t ′c′ ∈ C0 for any non-

negative t, t ′. This also implies that C is a convex cone. This is a very natural restriction, and is

satisfied by the space C used by the weak learning conditions of AdaBoost.MH, AdaBoost.M1,

AdaBoost.MR, SAMME as well as every edge-over-random condition.1 For simplicity of presenta-

tion we fix the weights αt = 1 in each round. With fT defined as in (1), whether the final hypotheses

output by Booster makes a prediction error on an example i is decided by whether an incorrect label

received the maximum number of votes, fT (i,1)≤ maxk
l=2 fT (i, l). Therefore, the optimum Booster

payoff can be written as

min
C1∈C

max
h1∈H all:

C1•(1h1
−B)≤0

. . . min
CT∈C

max
hT∈H all:

CT •(1hT
−B)≤0

1

m

m

∑
i=1

Lerr( fT (xi,1), . . . , fT (xi,k)). (15)

where the function Lerr : Rk → R encodes 0-1 error

Lerr(s) = 1

[
s(1)≤ max

l>1
s(l)

]
. (16)

1. All our results hold under the weaker restriction on the space C , where the set of possible cost vectors C0 for a row i

could depend on i. For simplicity of exposition, we stick to the more restrictive assumption that C0 is common across

all rows.
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In general, we will also consider other loss functions L : Rk → R such as exponential loss, hinge

loss, etc. that upper-bound error and are proper: that is, L(s) is increasing in the weight of the

correct label s(1), and decreasing in the weights of the incorrect labels s(l), l 6= 1.

Directly analyzing the optimal payoff is hard. However, Schapire (2001) observed that the

payoffs can be very well approximated by certain potential functions. Indeed, for any b ∈Rk define

the potential function φb
t : Rk → R by the following recurrence:

φb
0(s) = L(s)

φb
t (s) =

min
c∈C0

max
p∈∆{1,...,k}

El∼p

[
φb

t−1 (s+ el)
]

s.t. El∼p [c(l)]≤ 〈b,c〉 ,
(17)

where l ∼ p denotes that label l is sampled from the distribution p, and el ∈ Rk is the unit-vector

whose lth coordinate is 1 and the remaining coordinates zero. Notice the recurrence uses the col-

lection of rows C0 instead of the collection of cost matrices C . When there are T − t rounds remain-

ing (that is, after t rounds of boosting), these potential functions compute an estimate φb
T−t(st) of

whether an example x will be misclassified, based on its current state st consisting of counts of votes

received so far on various classes:

st(l) =
t−1

∑
t ′=1

1 [ht ′(x) = l] . (18)

Notice this definition of state assumes that αt = 1 in each round. Sometimes, we will choose the

weights differently. In such cases, a more appropriate definition is the weighted state ft ∈ Rk,

tracking the weighted counts of votes received so far:

ft(l) =
t−1

∑
t ′=1

αt ′1 [ht ′(x) = l] . (19)

However, unless otherwise noted, we will assume αt = 1, and so the definition in (18) will suffice.

The recurrence in (17) requires the max player’s response p to satisfy the constraint that the

expected cost under the distribution p is at most the inner-product 〈c,b〉. If there is no distribution

satisfying this requirement, then the value of the max expression is −∞. The existence of a valid

distribution depends on both b and c and is captured by the following:

∃p ∈ ∆{1, . . . ,k} : El∼p [c(l)]≤ 〈c,b〉 ⇐⇒ min
l

c(l)≤ 〈b,c〉 . (20)

In this paper, the vector b will always correspond to some row B(i) of the baseline used in the

weak learning condition. In such a situation, the next lemma shows that a distribution satisfying the

required constraints will always exist.

Lemma 7 If C0 is a cone and (14) holds, then for any row b = B(i) of the baseline and any cost

vector c ∈ C0, (20) holds unless the condition (C ,B) is vacuous.

Proof We show that if (20) does not hold, then the condition is vacuous. Assume that for row

b = B(i0) of the baseline, and some choice of cost vector c ∈ C0, (20) does not hold. We pick a cost-

matrix C ∈ C , such that no weak classifier h can satisfy the requirement (2), implying the condition
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must be vacuous. The ith0 row of the cost matrix is c, and the remaining rows are 0. Since C0 is a

cone, 0 ∈ C0 and hence the cost matrix lies in C . With this choice for C, the condition (2) becomes

c(h(xi)) =C (i,h(xi))≤ 〈C(i),B(i)〉= 〈c,b〉< min
l

c(l),

where the last inequality holds since, by assumption, (20) is not true for this choice of c,b. The pre-

vious equation is an impossibility, and hence no such weak classifier h exists, showing the condition

is vacuous.

Lemma 7 shows that the expression in (17) is well defined, and takes on finite values. We next

record an alternate dual form for the same recurrence which will be useful later.

Lemma 8 The recurrence in (17) is equivalent to

φb
t (s) = min

c∈C0

k
max
l=1

{
φb

t−1 (s+ el)− (c(l)−〈c,b〉)
}
. (21)

Proof Using Lagrangean multipliers, we may convert (17) to an unconstrained expression as fol-

lows:

φb
t (s) = min

c∈C0

max
p∈∆{1,...,k}

min
λ≥0

{
El∼p

[
φb

t−1 (s+ el)
]
−λ(El∼p [c(l)]−〈c,b〉)

}
.

Applying Theorem 1 to the inner min-max expression we get

φb
t (s) = min

c∈C0

min
λ≥0

max
p∈∆{1,...,k}

{
El∼p

[
φb

t−1 (s+ el)
]
− (El∼p [λc(l)]−〈λc,b〉)

}
.

Since C0 is a cone, c ∈ C0 implies λc ∈ C0. Therefore we may absorb the Lagrange multiplier into

the cost vector:

φb
t (s) = min

c∈C0

max
p∈∆{1,...,k}

El∼p

[
φb

t−1 (s+ el)− (c(l)−〈c,b〉)
]
.

For a fixed choice of c, the expectation is maximized when the distribution p is concentrated on a

single label that maximizes the inner expression, which completes our proof.

The dual form of the recurrence is useful for optimally choosing the cost matrix in each round. When

the weak learning condition being used is (C ,B), Schapire (2001) proposed a Booster strategy,

called the OS strategy, which always chooses the weight αt = 1, and uses the potential functions to

construct a cost matrix Ct as follows. Each row Ct(i) of the matrix achieves the minimum of the

right hand side of (21) with b replaced by B(i), t replaced by T − t, and s replaced by current state

st(i):

Ct(i) = argmin
c∈C0

k
max
l=1

{
φ

B(i)
T−t−1 (s+ el)− (c(l)−〈c,B(i)〉)

}
. (22)

The following theorem, proved in the appendix, provides a guarantee for the loss suffered by the

OS algorithm, and also shows that it is the game-theoretically optimum strategy when the number

of examples is large. Similar results have been proved by Schapire (2001), but our theorem holds

much more generally, and also achieves tighter lower bounds.
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Theorem 9 (Extension of results in Schapire (2001)) Suppose the weak-learning condition is not

vacuous and is given by (C ,B), where C is such that, for some convex cone C0 ⊆ Rk, the condition

(14) holds. Let the potential functions φb
t be defined as in (17), and assume the Booster employs the

OS algorithm, choosing αt = 1 and Ct as in (22) in each round t. Then the average potential of the

states,

1

m

m

∑
i=1

φ
B(i)
T−t (st(i)) ,

never increases in any round. In particular, the loss suffered after T rounds of play is at most

1

m

m

∑
i=1

φ
B(i)
T (0). (23)

Further, under certain conditions, this bound is nearly tight. In particular, assume the loss

function does not vary too much but satisfies

sup
s,s′∈ST

|L(s)−L(s′)| ≤ �(L,T ), (24)

where ST , a subset of
{

s ∈ Rk : ‖s‖∞ ≤ T
}

, is the set of all states reachable in T iterations, and

�(L,T ) is an upper bound on the discrepancy of losses between any two reachable states when the

loss function is L and the total number of iterations is T . Then, for any ε > 0, when the number of

examples m is sufficiently large,

m ≥ T�(L,T )

ε
, (25)

no Booster strategy can guarantee to achieve in T rounds a loss that is ε less than the bound (23).

In order to implement the nearly optimal OS strategy, we need to solve (22). This is computationally

only as hard as evaluating the potentials, which in turn reduces to computing the recurrences in

(17). In the next few sections, we study how to do this when using various losses and weak learning

conditions.

6. Solving for Any Fixed Edge-over-random Condition

In this section we show how to implement the OS strategy when the weak learning condition is

any fixed edge-over-random condition: (C ,B) for some B ∈ Beor
γ . By our previous discussions, this

is equivalent to computing the potential φb
t by solving the recurrence in (17), where the vector b

corresponds to some row of the baseline B. Let ∆k
γ ⊆ ∆{1, . . . ,k} denote the set of all edge-over-

random distributions on {1, . . . ,k} with γ more weight on the first coordinate:

∆k
γ = {b ∈ ∆{1, . . . ,k} : b(1)− γ = max{b(2), . . . ,b(k)}} . (26)

Note, that Beor
γ consists of all matrices whose rows belong to the set ∆k

γ . Therefore we are interested

in computing φb, where b is an arbitrary edge-over-random distribution: b ∈ ∆k
γ . We begin by

simplifying the recurrence (17) satisfied by such potentials, and show how to compute the optimal

cost matrix in terms of the potentials.
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Lemma 10 Assume L is proper, and b ∈ ∆k
γ is an edge-over-random distribution. Then the recur-

rence (17) may be simplified as

φb
t (s) = El∼b [φt−1 (s+ el)] . (27)

Further, if the cost matrix Ct is chosen as follows

Ct(i, l) = φb
T−t−1(st(i)+ el), (28)

then Ct satisfies the condition in (22), and hence is the optimal choice.

Proof Let C eor
0 ⊆ Rk denote all vectors c satisfying ∀l : c(1)≤ c(l). Then, we have

φb
t (s) =

min
c∈C eor

0

max
p∈∆{1,...,k}

El∼p [φt−1 (s+ el)]

s.t. El∼p[c(l)]≤ El∼b [c(l)] ,
( by (17) )

= min
c∈C eor

0

max
p∈∆

min
λ≥0

{
El∼p

[
φb

t−1 (s+ el)
]
+λ(El∼b [c(l)]−El∼p[c(l)])

}
(Lagrangean)

= min
c∈C eor

0

min
λ≥0

max
p∈∆

El∼p

[
φb

t−1 (s+ el)
]
+λ〈b−p,c〉(Theorem 1)

= min
c∈C eor

0

max
p∈∆

El∼p

[
φb

t−1 (s+ el)
]
+ 〈b−p,c〉(absorb λ into c)

= max
p∈∆

min
c∈C eor

0

El∼p

[
φb

t−1 (s+ el)
]
+ 〈b−p,c〉(Theorem 1) .

Unless b(1)− p(1) ≤ 0 and b(l)− p(l) ≥ 0 for each l > 1, the quantity 〈b−p,c〉 can be made

arbitrarily small for appropriate choices of c ∈ C eor
0 . The max-player is therefore forced to constrain

its choices of p, and the above expression becomes

max
p∈∆

El∼p

[
φb

t−1 (s+ el)
]

s.t. b(l)−q(l)

{
≥ 0 if l = 1,

≤ 0 if l > 1.

Lemma 6 of Schapire (2001) states that if L is proper (as defined here), so is φb
t ; the same result can

be extended to our drifting games. This implies the optimal choice of p in the above expression is in

fact the distribution that puts as small weight as possible in the first coordinate, namely b. Therefore

the optimum choice of p is b, and the potential is the same as in (27).

We end the proof by showing that the choice of cost matrix in (28) is optimum. Theorem 9

states that a cost matrix Ct is the optimum choice if it satisfies (22), that is, if the expression

k
max
l=1

{
φ

B(i)
T−t−1 (s+ el)− (Ct(i, l)−〈Ct(i),B(i)〉)

}
(29)

is equal to

min
c∈C0

k
max
l=1

{
φ

B(i)
T−t−1 (s+ el)− (c(l)−〈c,B(i)〉)

}
= φ

B(i)
T−t (s) , (30)
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where the equality in (30) follows from (21). If Ct(i) is chosen as in (28), then, for any label l, the

expression within max in (29) evaluates to

φ
B(i)
T−t−1 (s+ el) −

(
φ

B(i)
T−t−1 (s+ el)−〈Ct(i),B(i)〉

)

= 〈B(i),Ct(i)〉
= El∼B(i) [Ct(i, l)]

= El∼B(i)

[
φ

B(i)
T−t−1 (s+ el)

]

= φ
B(i)
T−t(s),

where the last equality follows from (27). Therefore the max expression in (29) is also equal to

φ
B(i)
T−t(s), which is what we needed to show.

Equation (28) in Lemma 10 implies the cost matrix chosen by the OS strategy can be expressed

in terms of the potentials, which is the only thing left to calculate. Fortunately, the simplification

(27) of the drifting games recurrence, allows the potentials to be solved completely in terms of a

random-walk R t
b(x). This random variable denotes the position of a particle after t time steps, that

starts at location x ∈ Rk, and in each step moves in direction el with probability b(l).

Corollary 11 The recurrence in (27) can be solved as follows:

φb
t (s) = E

[
L
(
R t

b(s)
)]
. (31)

Proof Inductively assuming φb
t−1(x) = E

[
L(R t−1

b (x))
]
,

φt(s) = El∼b

[
L(R t−1

b (s)+ el)
]
= E

[
L(R t

b(s))
]
.

The last equality follows by observing that the random position R t−1
b (s)+el is distributed as R t

b(s)
when l is sampled from b.

Lemma 10 and Corollary 11 together imply:

Theorem 12 Assume L is proper and b ∈ ∆k
γ is an edge-over-random distribution. Then the poten-

tial φb
t , defined by the recurrence in (17), has the solution given in (31) in terms of random walks.

Before we can compute (31), we need to choose a loss function L. We next consider two options for

the loss—the non-convex 0-1 error, and exponential loss.

6.1 Exponential Loss

The exponential loss serves as a smooth convex proxy for discontinuous non-convex 0-1 error (16)

that we would ultimately like to bound, and is given by

L
exp
η (s) =

k

∑
l=2

eη(sl−s1). (32)

The parameter η can be thought of as the weight in each round, that is, αt = η in each round. Then

notice that the weighted state ft of the examples, defined in (19), is related to the unweighted states
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st as ft(l) = ηst(l). Therefore the exponential loss function in (32) directly measures the loss of the

weighted state as

Lexp(ft) =
k

∑
l=2

e ft(l)− ft(1). (33)

Because of this correspondence, the optimal strategy with the loss function Lexp and αt = η is the

same as that using loss L
exp
η and αt = 1. We study the latter setting so that we may use the results

derived earlier. With the choice of the exponential loss L
exp
η , the potentials are easily computed, and

in fact have a closed form solution.

Theorem 13 If L
exp
η is as in (32), where η is non-negative, then the solution in Theorem 12 evaluates

to φb
t (s) = ∑k

l=2(al)
teηl(sl−s1), where al = 1− (b1 +bl)+ eηbl + e−ηb1.

The proof by induction is straightforward. By tuning the weight η, each al can be always made

less than 1. This ensures the exponential loss decays exponentially with rounds. In particular, when

B = Uγ (so that the condition is (C eor,Uγ)), the relevant potential φt(s) or φt(f) is given by

φt(s) = φt( f ) = κ(γ,η)t
k

∑
l=2

eη(sl−s1) = κ(γ,η)t
k

∑
l=2

e fl− f1 (34)

where

κ(γ,η) = 1+
(1− γ)

k

(
eη + e−η −2

)
−
(
1− e−η

)
γ. (35)

The cost-matrix output by the OS algorithm can be simplified by rescaling, or adding the same

number to each coordinate of a cost vector, without affecting the constraints it imposes on a weak

classifier, to the following form

C(i, l) =

{
(eη −1)eη(sl−s1) if l > 1,

(e−η −1)∑k
l=2 eη(sl−s1) if l = 1.

Using the correspondence between unweighted and weighted states, the above may also be rewritten

as:

C(i, l) =

{
(eη −1)e fl− f1 if l > 1,

(e−η −1)∑k
l=2 e fl− f1 if l = 1.

(36)

With such a choice, Theorem 9 and the form of the potential guarantee that the average loss

1

m

m

∑
i=1

L
exp
η (st(i)) =

1

m

m

∑
i=1

Lexp(ft(i)) (37)

of the states changes by a factor of at most κ(γ,η) every round. Therefore the final loss, which upper

bounds the error, that is, the fraction of misclassified training examples, is at most (k−1)κ(γ,η)T
.

Since this upper bound holds for any value of η, we may tune it to optimize the bound. Setting

η = ln(1+ γ), the error can be upper bounded by (k−1)e−T γ2/2.
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6.2 Zero-one Loss

There is no simple closed form solution for the potential when using the zero-one loss Lerr (16).

However, we may compute the potentials efficiently as follows. To compute φb
t (s), we need to find

the probability that a random walk (making steps according to b) of length t in Zk, starting at s will

end up in a region where the loss function is 1. Any such random walk will consist of xl steps in

direction el where the non-negative ∑l xl = t. The probability of each such path is ∏l b
xl

l . Further,

there are exactly
(

t
x1,...,xk

)
such paths. Starting at state s, such a path will lead to a correct answer

only if s1 + x1 > sl + xl for each l > 1. Hence we may write the potential φb
t (s) as

φb
t (s) = 1−

t

∑
x1,...,xk

(
t

x1,...,xk

)
∏k

l=1 b
xl

l

s.t. x1 + . . .+ xk = t

∀l : xl ≥ 0

∀l : xl + sl ≤ x1 + s1.

Since the xl’s are restricted to be integers, this problem is presumably hard. In particular, the only

algorithms known to the authors that take time logarithmic in t is also exponential in k. However,

by using dynamic programming, we can compute the summation in time polynomial in |sl|, t and k.

In fact, the run time is always O(t3k), and at least Ω(tk).
The bounds on error we achieve, although not in closed form, are much tighter than those

obtainable using exponential loss. The exponential loss analysis yields an error upper bound of

(k−1)e−Tγ2/2. Using a different initial distribution, Schapire and Singer (1999) achieve the slightly

better bound
√
(k−1)e−T γ2/2. However, when the edge γ is small and the number of rounds are

few, each bound is greater than 1 and hence trivial. On the other hand, the bounds computed by the

above dynamic program are sensible for all values of k, γ and T . When b is the γ-biased uniform

distribution b= ( 1−γ
k
+γ, 1−γ

k
, 1−γ

k
, . . . , 1−γ

k
) a table containing the error upper bound φb

T (0) for k = 6,

γ = 0 and small values for the number of rounds T is shown in Figure 2(a); note that with the

exponential loss, the bound is always 1 if the edge γ is 0. Further, the bounds due to the exponential

loss analyses seem to imply that the dependence of the error on the number of labels is monotonic.

However, a plot of the tighter bounds with edge γ = 0.1, number of rounds T = 10 against various

values of k, shown in Figure 2(b), indicates that the true dependence is more complicated. Therefore

the tighter analysis also provides qualitative insights not obtainable via the exponential loss bound.

7. Solving for the Minimal Weak Learning Condition

In the previous section we saw how to find the optimal boosting strategy when using any fixed

edge-over-random condition. However as we have seen before, these conditions can be stronger

than necessary, and therefore lead to boosting algorithms that require additional assumptions. Here

we show how to compute the optimal algorithm while using the weakest weak learning condition,

provided by (13), or equivalently the condition used by AdaBoost.MR, (C MR,BMR
γ ). Since there

are two possible formulations for the minimal condition, it is not immediately clear which to use

to compute the optimal boosting strategy. To resolve this, we first show that the optimal boosting

strategy based on any formulation of a necessary and sufficient weak learning condition is the same.

Having resolved this ambiguity, we show how to compute this strategy for the exponential loss and

0-1 error using the first formulation.
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T φb
T (0) T φb

T (0)

0 1.00 6 0.90

1 0.83 7 0.91

2 0.97 8 0.90

3 0.93 9 0.89

4 0.89 10 0.89

5 0.89
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Figure 2: Plot of potential value φb
T (0) where b is the γ-biased uniform distribution: b = ( 1−γ

k
+

γ, 1−γ
k
, 1−γ

k
, . . . , 1−γ

k
). (a): Potential values (rounded to two decimal places) for different

number of rounds T using γ = 0 and k = 6. These are bounds on the error, and less than

1 even when the edge and number of rounds are small. (b): Potential values for different

number of classes k, with γ = 0.1, and T = 10. These are tight estimates for the optimal

error, and yet not monotonic in the number of classes.

7.1 Game-theoretic Equivalence of Necessary and Sufficient Weak-learning Conditions

In this section we study the effect of the weak learning condition on the game-theoretically optimal

boosting strategy. We introduce the notion of game-theoretic equivalence between two weak learn-

ing conditions, that determines if the payoffs (15) of the optimal boosting strategies based on the

two conditions are identical. This should hold whenever both games last for the same number of

iterations T , for any value of T . This is different from the usual notion of equivalence between two

conditions, which holds if any weak classifier space satisfies both conditions or neither condition.

In fact we prove that game-theoretic equivalence is a broader notion; in other words, equivalence

implies game-theoretic equivalence. A special case of this general result is that any two weak

learning conditions that are necessary and sufficient, and hence equivalent to boostability, are also

game-theoretically equivalent. In particular, so are the conditions of AdaBoost.MR and (13), and

the resulting optimal Booster strategies enjoy equally good payoffs. We conclude that in order to

derive the optimal boosting strategy that uses the minimal weak-learning condition, it is sound to

use either of these two formulations.

The purpose of a weak learning condition (C ,B) is to impose restrictions on the Weak-Learner’s

responses in each round. These restrictions are captured by subsets of the weak classifier space

as follows. If Booster chooses cost-matrix C ∈ C in a round, the Weak-Learner’s response h is

restricted to the subset SC ⊆ H all defined as

SC =
{

h ∈ H all : C•1h ≤ C•B
}
.
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Thus, a weak learning condition is essentially a family of subsets of the weak classifier space.

Further, smaller subsets mean fewer options for Weak-Learner, and hence better payoffs for the

optimal boosting strategy. Based on this idea, we may define when a weak learning condition

(C1,B1) is game-theoretically stronger than another condition (C2,B2) if the following holds: For

every subset SC2
in the second condition (that is C2 ∈ C2), there is a subset SC1

in the first condition

(that is C1 ∈ C1), such that SC1
⊆ SC2

. Mathematically, this may be written as follows:

∀C1 ∈ C1,∃C2 ∈ C2 : SC1
⊆ SC2

.

Intuitively, a game theoretically stronger condition will allow Booster to place similar or stricter

restrictions on Weak-Learner in each round. Therefore, the optimal Booster payoff using a game-

theoretically stronger condition is at least equally good, if not better. It therefore follows that if two

conditions are both game-theoretically stronger than each other, the corresponding Booster payoffs

must be equal, that is they must be game-theoretically equivalent.

Note that game-theoretic equivalence of two conditions does not mean that they are identical

as families of subsets, for we may arbitrarily add large and “useless” subsets to the two condi-

tions without affecting the Booster payoffs, since these subsets will never be used by an optimal

Booster strategy. In fact we next show that game-theoretic equivalence is a broader notion than just

equivalence.

Theorem 14 Suppose (C1,B1) and (C2,B2) are two equivalent weak learning conditions, that

is, every space H satisfies both or neither condition. Then each condition is game-theoretically

stronger than the other, and hence game-theoretically equivalent.

Proof We argue by contradiction. Assume that despite equivalence, the first condition (without

loss of generality) includes a particularly hard subset SC1
⊆ H all,C1 ∈ C1 which is not smaller

than any subset in the second condition. In particular, for every subset SC2
,C2 ∈ C2 in the second

condition is satisfied by some weak classifier hC2
not satisfying the hard subset in the first condition:

hC2
∈ SC2

\SC1
. Therefore, the space

H = {hC2
: C2 ∈ C2} ,

formed by just these classifiers satisfies the second condition, but has an empty intersection with

SC1
. In other words, H satisfies the second but not the first condition, a contradiction to their

equivalence.

An immediate corollary is the game theoretic equivalence of necessary and equivalent conditions.

Corollary 15 Any two necessary and sufficient weak learning conditions are game-theoretically

equivalent. In particular the optimum Booster strategies based on AdaBoost.MR’s condition

(C MR,BMR
γ ) and (13) have equal payoffs.

Therefore, in deriving the optimal Booster strategy, it is sound to work with either AdaBoost.MR’s

condition or (13). In the next section, we actually compute the optimal strategy using the latter

formulation.
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7.2 Optimal Strategy with the Minimal Conditions

In this section we compute the optimal Booster strategy that uses the minimum weak learning condi-

tion provided in (13). We choose this instead of AdaBoost.MR’s condition because this description

is more closely related to the edge-over-random conditions, and the resulting algorithm has a close

relationship to the ones derived for fixed edge-over-random conditions, and therefore more insight-

ful. However, this formulation does not state the condition as a single pair (C,B), and therefore we

cannot directly use the result of Theorem 9. Instead, we define new potentials and a modified OS

strategy that is still nearly optimal, and this constitutes the first part of this section. In the second

part, we show how to compute these new potentials and the resulting OS strategy.

7.2.1 MODIFIED POTENTIALS AND OS STRATEGY

The condition in (13) is not stated as a single pair (C eor,B), but uses all possible edge-over-random

baselines B∈Beor
γ . Therefore, we modify the definitions (17) of the potentials accordingly to extract

an optimal Booster strategy. Recall that ∆k
γ is defined in (26) as the set of all edge-over-random

distributions which constitute the rows of edge-over-random baselines B ∈ Beor
γ . Using these, define

new potentials φt(s) as follows:

φt(s) =
min

c∈C eor
0

max
b∈∆k

γ

max
p∈∆{1,...,k}

El∼p [φt−1 (s+ el)]

s.t. El∼p[c(l)]≤ 〈b,c〉 .
(38)

The main difference between (38) and (17) is that while the older potentials were defined using

a fixed vector b corresponding to some row in the fixed baseline B, the new definition takes the

maximum over all possible rows b ∈ ∆k
γ that an edge-over-random baseline B ∈ Beor

γ may have. As

before, we may write the recurrence in (38) in its dual form

φt(s) = min
c∈C eor

0

max
b∈∆k

γ

k
max
l=1

{φt−1 (s+ el)− (c(l)−〈c,b〉)} .

The proof is very similar to that of Lemma 8 and is omitted. We may now define a new OS strategy

that chooses a cost-matrix in round t analogously:

Ct(i) ∈ argmin
c∈C eor

0

max
b∈∆k

γ

k
max
l=1

{φt−1 (s+ el)− (c(l)−〈c,b〉)} . (39)

where recall that st(i) denotes the state vector (defined in (18)) of example i. With this strategy, we

can show an optimality result very similar to Theorem 9.

Theorem 16 Suppose the weak-learning condition is given by (13). Let the potential functions φb
t

be defined as in (38), and assume the Booster employs the modified OS strategy, choosing αt = 1

and Ct as in (39) in each round t. Then the average potential of the states,

1

m

m

∑
i=1

φT−t (st(i)) ,

never increases in any round. In particular, the loss suffered after T rounds of play is at most φT (0).
Further, for any ε > 0, when the loss function satisfies (24) and the number of examples m is as

large as in (25), no Booster strategy can guarantee to achieve less than φT (0)− ε loss in T rounds.

The proof is very similar to that of Theorem 9 and is omitted.
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7.2.2 COMPUTING THE NEW POTENTIALS

Here we show how to compute the new potentials. The resulting algorithms will require exponential

time, and we provide some empirical evidence showing that this might be necessary. Finally, we

show how to carry out the computations efficiently in certain special situations.

An Exponential Time Algorithm. Here we show how the potentials may be computed as the expected

loss of some random walk, just as we did for the potentials arising with fixed edge-over-random

conditions. The main difference is there will be several random walks to choose from.

We first begin by simplifying the recurrence (38), and expressing the optimal cost matrix in

(39) in terms of the potentials, just as we did in Lemma 10 for the case of fixed edge-over-random

conditions.

Lemma 17 Assume L is proper. Then the recurrence (38) may be simplified as

φt(s) = max
b∈∆k

γ

El∼b [φt−1 (s+ el)] . (40)

Further, if the cost matrix Ct is chosen as follows:

Ct(i, l) = φT−t−1(st(i)+ el), (41)

then Ct satisfies the condition in (39).

The proof is very similar to that of Lemma 10 and is omitted. Equation (41) implies that, as before,

computing the optimal Booster strategy reduces to computing the new potentials. One compu-

tational difficulty created by the new definitions (38) or (40) is that they require infinitely many

possible distributions b ∈ ∆k
γ to be considered. We show that we may in fact restrict our attention to

only finitely many of such distributions described next.

At any state s and number of remaining iterations t, let π be a permutation of the coordinates

{2, . . . ,k} that sorts the potential values:

φt−1

(
s+ eπ(k)

)
≥ φt−1

(
s+ eπ(k−1)

)
≥ . . .≥ φt−1

(
s+ eπ(2)

)
. (42)

For any permutation π of the coordinates {2, . . . ,k}, let bπ
a denote the γ-biased uniform distribution

on the a coordinates {1,πk,πk−1, . . . ,πk−a+2}:

bπ
a(l) =





1−γ
a

+ γ if l = 1
1−γ

a
if l ∈ {πk, . . . ,πk−a+2}

0 otherwise.

(43)

Then, the next lemma shows that we may restrict our attention to only the distributions
{

bπ
2, . . . ,b

π
k

}

when evaluating the recurrence in (40).

Lemma 18 Fix a state s and remaining rounds of boosting t. Let π be a permutation of the coordi-

nates {2, . . . ,k} satisfying (42), and define bπ
a as in (43). Then the recurrence (40) may be simplified

as follows:

φt(s) = max
b∈∆k

γ

El∼b [φt−1 (s+ el)] = max
2≤a≤k

El∼bπ
a
[φt−1 (s+ el)] . (44)
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Proof Assume (by relabeling the coordinates if necessary) that π is the identity permutation, that

is, π(2) = 2, . . . ,π(k) = k. Observe that the right hand side of (40) is at least as much the right hand

side of (44) since the former considers more distributions. We complete the proof by showing that

the former is also at most the latter.

By (40), we may assume that some optimal b satisfies

b(k) = · · ·= b(k−a+2) = b(1)− γ,

b(k−a+1) ≤ b(1)− γ,

b(k−a) = · · ·= b(2) = 0.

Therefore, b is a distribution supported on a+ 1 elements, with the minimum weight placed on

element k−a+1. This implies b(k−a+1) ∈ [0,1/(a+1)].
Now, El∼b [φt−1(s+ el)] may be written as

γ ·φt−1(s+ e1)+b(k−a+1)φt−1(s+ ek−a+1)

+ (1− γ−b(k−a+1))
φt−1(s+ e1)+φt−1(s+ ek−a+2)+ . . .φt−1(s+ ek)

a

= γ ·φt−1(s+ e1)+
b(k−a+1)

1− γ
φt−1(s+ ek−a+1)

+ (1− γ)
{(

1− b(k−a+1)

1− γ

)
φt−1(s+ e1)+φt−1(s+ ek−a+2)+ . . .φt−1(s+ ek)

a

}

Replacing b(k−a+1) by x in the above expression, we get a linear function of x. When restricted to

[0,1/(a+1)] the maximum value is attained at a boundary point. For x = 0, the expression becomes

γ ·φt−1(s+ e1)+(1− γ)
φt−1(s+ e1)+φt−1(s+ ek−a+2)+ . . .φt−1(s+ ek)

a
.

For x = 1/(a+1), the expression becomes

γ ·φt−1(s+ e1)+(1− γ)
φt−1(s+ e1)+φt−1(s+ ek−a+1)+ . . .φt−1(s+ ek)

a+1
.

Since b(k − a+ 1) lies in [0,1/(a+ 1)], the optimal value is at most the maximum of the two.

However each of these last two expressions is at most the right hand side of (44), completing the

proof.

Unraveling (44), we find that φt(s) is the expected loss of the final state reached by some random

walk of t steps starting at state s. However, the number of possibilities for the random-walk is

huge; indeed, the distribution at each step can be any of the k−1 possibilities bπ
a for a ∈ {2, . . . ,k},

where the parameter a denotes the size of the support of the γ-biased uniform distribution chosen at

each step. In other words, at a given state s with t rounds of boosting remaining, the parameter a

determines the number of directions the optimal random walk will consider taking; we will therefore

refer to a as the degree of the random walk given (s, t). Now, the total number of states reachable in

T steps is O
(
T k−1

)
. If the degree assignment every such state, for every value of t ≤ T is fixed in

advance, a = {a(s, t) : t ≤ T,s reachable}, we may identify a unique random walk R a,t(s) of length

t starting at step s. Therefore the potential may be computed as

φt(s) = max
a

E
[
R a,t(s)

]
. (45)
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Figure 3: Green pixels (crosses) have degree 3, black pixels (solid squares) have degree 2. Each

step is diagonally down (left), and up (if x < y) and right (if x > y) and both when degree

is 3. The rightmost figure uses γ = 0.4, and the other two γ = 0. The loss function is 0-1.

A dynamic programming approach for computing (45) requires time and memory linear in the

number of different states reachable by a random walk that takes T coordinate steps: O(T k−1). This

is exponential in the data set size, and hence impractical. In the next two sections we show that

perhaps there may not be any way of computing these efficiently in general, but provide efficient

algorithms in certain special cases.

Hardness of Evaluating the Potentials. Here we provide empirical evidence for the hardness of

computing the new potentials. We first identify a computationally easier problem, and show that

even that is probably hard to compute. Equation (44) implies that if the potentials were efficiently

computable, the correct value of the degree a could be determined efficiently. The problem of

determining the degree a given the state s and remaining rounds t is therefore easier than evaluating

the potentials. However, a plot of the degrees against states and remaining rounds, henceforth called

a degree map, reveals very little structure that might be captured by a computationally efficient

function.

We include three such degree maps in Figure 3. Only three classes k = 3 are used, and the

loss function is 0-1 error. We also fix the number T of remaining rounds of boosting and the value

of the edge γ for each plot. For ease of presentation, the 3-dimensional states s = (s1,s2,s3) are

compressed into 2-dimensional pixel coordinates (u = s2 − s1,v = s3 − s2). It can be shown that

this does not take away information required to evaluate the potentials or the degree at any pixel

(u,v). Further, only those states are considered whose compressed coordinates u,v lie in the range

[−T,T ]; in T rounds, these account for all the reachable states. The degrees are indicated on the

plot by colors. Our discussion in the previous sections implies that the possible values of the degree

is 2 or 3. When the degree at a pixel (u,v) is 3, the pixel is colored green, and when the degree is 2,

it is colored black.

Note that a random walk over the space s ∈ R3 consisting of distributions over coordinate steps

{(1,0,0),(0,1,0),(0,0,1)} translates to a random walk over (u,v) ∈ R2 where each step lies in

the set {(−1,−1),(1,0),(0,1)}. In Figure 3, these correspond to the directions diagonally down,

up or right. Therefore at a black pixel, the random walk either chooses between diagonally down

and up, or between diagonally down and right, with probabilities {1/2+ γ/2,1/2− γ/2}. On the
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Figure 4: Optimum recurrence value. We set γ = 0. Surface is irregular for smaller values of T , but

smoother for larger values, admitting hope for approximation.

other hand, at a green pixel, the random walk chooses among diagonally down, up and right with

probabilities (γ+(1− γ)/3,(1− γ)/3,(1− γ)/3). The degree maps are shown for varying values of

T and the edge γ. While some patterns emerge for the degrees, such as black or green depending on

the parity of u or v, the authors found the region near the line u = v still too complex to admit any

solution apart from a brute-force computation.

We also plot the potential values themselves in Figure 4 against different states. In each plot,

the number of iterations remaining, T , is held constant, the number of classes is chosen to be 3, and

the edge γ = 0. The states are compressed into pixels as before, and the potential is plotted against

each pixel, resulting in a 3-dimensional surface. We include two plots, with different values for

T . The surface is irregular for T = 3 rounds, but smoother for 20 rounds, admitting some hope for

approximation.

An alternative approach would be to approximate the potential φt by the potential φb
t for some

fixed b ∈ ∆k
γ corresponding to some particular edge-over-random condition. Since φt ≥ φb

t for all

edge-over-random distributions b, it is natural to approximate by choosing b that maximizes the

fixed edge-over-random potential. (It can be shown that this b corresponds to the γ-biased uniform

distribution.) Two plots of comparing the potential values at 0, φT (0) and maxb φb
T (0), which cor-

respond to the respective error upper bounds, is shown in Figure 5. In the first plot, the number

of classes k is held fixed at 6, and the values are plotted for different values of iterations T . In the

second plot, the number of classes vary, and the number of iterations is held at 10. Both plots show

that the difference in the values is significant, and hence maxb φb
T (0) would be a rather optimistic

upper bound on the error when using the minimal weak learning condition.

If we use exponential loss (32), the situation is not much better. The degree maps for varying

values of the weight parameter η against fixed values of edge γ = 0.1, rounds remaining T = 20 and
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Figure 5: Comparison of φt(0) (blue, dashed) with maxq φ
q
t (0) (red, solid) over different rounds t

and different number of classes k. We set γ = 0 in both.
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Figure 6: Green pixels (crosses) have degree 3, black pixels (squares) have degree 2. Each step is

diagonally down (left), and up (if x < y) and right (if x > y) and both when degree is 3.

Each plot uses T = 20,γ = 0.1. The values of η are 0.08, 0.1 and 0.3, respectively. With

smaller values of η, more pixels have degree 3.

number of classes k = 3 are plotted in Figure 6. Although the patterns are simple, with the degree

3 pixels forming a diagonal band, we found it hard to prove this fact formally, or compute the exact

boundary of the band. However the plots suggest that when η is small, all pixels have degree 3. We

next find conditions under which this opportunity for tractable computation exists.

Efficient Computation in Special Cases. Here we show that when using the exponential loss, if the

edge γ is very small, then the potentials can be computed efficiently. We first show an intermediate

result. We already observed empirically that when the weight parameter η is small, the degrees all

become equal to k. Indeed, we can prove this fact.
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Lemma 19 If the loss function being used is exponential loss (32) and the weight parameter η is

small compared to the number of rounds

η ≤ 1

4
min

{
1

k−1
,

1

T

}
, (46)

then the optimal value of the degree a in (44) is always k. Therefore, in this situation, the potential

φt using the minimal weak learning condition is the same as the potential φu
t using the γ-biased

uniform distribution u,

u =

(
1− γ

k
+ γ,

1− γ

k
, . . . ,

1− γ

k

)
, (47)

and hence can be efficiently computed.

Proof We show φt = φu
t by induction on the remaining number t of boosting iterations. The base

case holds since, by definition, φ0 = φu
0 = L

exp
η . Assume, inductively that

φt−1(s) = φu
t−1(s) = κ(γ,η)t−1

k

∑
l=2

eη(sl−s1), (48)

where the second equality follows from (34). We show that

φt(s) = El∼u [φt−1(s+ el)] . (49)

By the inductive hypothesis and (27), the right hand side of (49) is in fact equal to φu
t , and we will

have shown φt = φu
t . The proof will then follow by induction.

In order to show (49), by Lemma 18, it suffices to show that the optimal degree a maximizing

the right hand side of (44) is always k:

El∼bπ
a
[φt−1 (s+ el)]≤ El∼bπ

k
[φt−1 (s+ el)] . (50)

By (48), φt−1 (s+ el0) may be written as φt−1(s)+κ(γ,η)t−1 ·ξl0 , where the term ξl0 is:

ξl0 =

{
(eη −1)eη(sl0

−s1) if l0 6= 1,

(e−η −1)∑k
l=2 eη(sl−s1) if l0 = 1.

Therefore (50) is the same as: El∼bπ
a
[ξl]≤ El∼bπ

k
[ξl]. Assume (by relabeling if necessary) that π is

the identity permutation on coordinates {2, . . . ,k}. Then the expression El∼bπ
a
[ξl] can be written as

El∼bπ
a
[ξl] =

(
1− γ

a
+ γ

)
ξ1 +

k

∑
l=k−a+2

(
1− γ

a

)
ξl

= γξ1 +(1− γ)

{
ξ1 +∑k

l=k−a+2 ξl

a

}
.

It suffices to show that the term in curly brackets is maximized when a = k. We will in fact show

that the numerator of the term is negative if a < k, and non-negative for a = k, which will complete

469



MUKHERJEE AND SCHAPIRE

our proof. Notice that the numerator can be written as

(eη −1)

{
k

∑
l=k−a+2

eη(sl−s1)

}
− (1− e−η)

k

∑
l=2

eη(sl−s1)

= (eη −1)

{
k

∑
l=k−a+2

eη(sl−s1)−
k

∑
l=2

eη(sl−s1)

}
+
{
(eη −1)− (1− e−η)

} k

∑
l=2

eη(sl−s1)

=
{

eη + e−η −2
} k

∑
l=2

eη(sl−s1)− (eη −1)

{
k−a+1

∑
l=2

eη(sl−s1)

}
.

When a = k, the second summation disappears, and we are left with a non-negative expression.

However when a < k, the second summation is at least eη(s2−s1). Since t ≤ T , and in t iterations the

absolute value of any state coordinate |st(l)| is at most T , the first summation is at most (k−1)e2ηT

and the second summation is at least e−2ηT . Therefore the previous expression is at most

(k−1)
(
eη + e−η −2

)
e2ηT − (eη −1)e−2ηT

= (eη −1)e−2ηT
{
(k−1)(1− e−η)e4ηT −1

}
.

We show that the term in curly brackets is negative. Firstly, using ex ≥ 1+ x, we have 1− e−η ≤
η ≤ 1/(4(k−1)) by choice of η. Therefore it suffices to show that e4ηT < 4. By choice of η again,

e4ηT ≤ e1 < 4. This completes our proof.

The above lemma seems to suggest that under certain conditions, a sort of degeneracy occurs, and

the optimal Booster payoff (15) is nearly unaffected by whether we use the minimal weak learning

condition, or the condition (C eor,Uγ). Indeed, we next prove this fact.

Theorem 20 Suppose the loss function is as in Lemma 19, and for some parameter ε > 0, the

number of examples m is large enough

m ≥ Te1/4

ε
. (51)

Consider the minimal weak learning condition (13), and the fixed edge-over-random condition

(C eor,Uγ) corresponding to the γ-biased uniform baseline Uγ. Then the optimal booster payoffs

using either condition is within ε of each other.

Proof We show that the OS strategies arising out of either condition is the same. In other words, at

any iteration t and state st , both strategies play the same cost matrix and enforce the same constraints

on the response of Weak-Learner. The theorem will then follow if we can invoke Theorems 9 and

16. For that, the number of examples needs to be as large as in (25). The required largeness would

follow from (51) if the loss function satisfied (24) with �(L,T ) at most exp(1/4). Since the largest

discrepancy in losses between two states reachable in T iterations is at most eηT − 0, the bound

follows from the choice of η in (46). Therefore, it suffices to show the equivalence of the OS

strategies corresponding to the two weak learning conditions.

We first show both strategies play the same cost-matrix. Lemma 19 states that the potential

function using the minimal weak learning condition is the same as when using the fixed condition

(C eor,Uγ): φt = φu
t , where u is as in (47). Since, according to (28) and (41), given a state st and

iteration t, the two strategies choose cost matrices that are identical functions of the respective
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potentials, by the equivalence of the potential functions, the resulting cost matrices must be the

same.

Even with the same cost matrix, the two different conditions could be imposing different con-

straints on Weak-Learner, which might affect the final payoff. For instance, with the baseline Uγ,

Weak-Learner has to return a weak classifier h satisfying

Ct •1h ≤ Ct •Uγ,

whereas with the minimal condition, the constraint on h is

Ct •1h ≤ max
B∈Beor

γ

Ct •B.

In order to show that the constraints are the same we therefore need to show that for the common

cost matrix Ct chosen, the right hand side of the two previous expressions are the same:

Ct •Uγ = max
B∈Beor

γ

Ct •Beor
γ . (52)

We will in fact show the stronger fact that the equality holds for every row separately:

∀i : 〈Ct(i),u〉= max
b∈∆k

γ

〈Ct(i),b〉 . (53)

To see this, first observe that the choice of the optimal cost matrix Ct in (41) implies the following

identity

〈Ct(i),b〉= El∼b [φT−t−1(st(i)+ el)] .

On the other hand, (44) and Lemma 19 together imply that the distribution b maximizing the right

hand side of the above is the γ-biased uniform distribution, from which (53) follows. Therefore, the

constraints placed on Weak-Learner by the cost-matrix Ct is the same whether we use minimum

weak learning condition or the fixed condition (C eor,Uγ).

One may wonder why η would be chosen so small, especially since the previous theorem indi-

cates that such choices for η lead to degeneracies. To understand this, recall that η represents the

size of the weights αt chosen in every round, and was introduced as a tunable parameter to help

achieve the best possible upper bound on zero-one error. More precisely, recall that the exponential

loss L
exp
η (s) of the unweighted state, defined in (32), is equal to the exponential loss Lexp(f) on the

weighted state, defined in (33), which in turn is an upper bound on the error Lerr(fT ) of the final

weighted state fT . Therefore the potential value φT (0) based on the exponential loss L
exp
η is an up-

per bound on the minimum error attainable after T rounds of boosting. At the same time, φT (0) is

a function of η. Therefore, we may tune this parameter to attain the best bound possible. Even with

this motivation, it may seem that a properly tuned η will not be as small as in Lemma 19, especially

since it can be shown that the resulting loss bound φT (0) will always be larger than a fixed constant

(depending on γ,k), no matter how many rounds T of boosting is used. However, the next result

identifies conditions under which the tuned value of η is indeed as small as in Lemma 19. This hap-

pens when the edge γ is very small, as is described in the next theorem. Intuitively, a weak classifier

achieving small edge has low accuracy, and a low weight reflects Booster’s lack of confidence in

this classifier.
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Theorem 21 When using the exponential loss function (32), and the minimal weak learning con-

dition (13), the loss upper bound φT (0) provided by Theorem 16 is more than 1 and hence trivial

unless the parameter η is chosen sufficiently small compared to the edge γ:

η ≤ kγ

1− γ
. (54)

In particular, when the edge is very small:

γ ≤ min

{
1

2
,

1

8k
min

{
1

k
,

1

T

}}
, (55)

the value of η needs to be as small as in (46).

Proof Comparing solutions (45) and (31) to the potentials corresponding to the minimal weak

learning condition and a fixed edge-over-random condition, we may conclude that the loss bound

φT (0) is in the former case is larger than φb
T (0), for any edge-over-random distribution b ∈ ∆k

γ .

In particular, when b is set to be the γ-biased uniform distribution u, as defined in (47), we get

φT (0) ≥ φu
T (0). Now the latter bound, according to (34), is κ(γ,η)T , where κ is defined as in

(35). Therefore, to get non-trivial loss bounds which are at most 1, we need to choose η such that

κ(γ,η)≤ 1. By (35), this happens when

(
1− e−η

)
γ ≥

(
eη + e−η −2

)(1− γ

k

)

i.e.,
kγ

1− γ
≥ eη + e−η −2

1− e−η
= eη −1 ≥ η.

Therefore (54) holds. When γ is as small as in (55), then 1−γ ≤ 1
2
, and therefore, by (54), the bound

on η becomes identical to that in (55).

The condition in the previous theorem, that of the existence of only a very small edge, is the most

we can assume for most practical data sets. Therefore, in such situations, we can compute the

optimal Booster strategy that uses the minimal weak learning conditions. More importantly, using

this result, we derive, in the next section, a highly efficient and practical adaptive algorithm, that is,

one that does not require any prior knowledge about the edge γ, and will therefore work with any

data set.

8. Variable Edges

So far we have required Weak-Learner to beat random by at least a fixed amount γ > 0 in each round

of the boosting game. In reality, the edge over random is larger initially, and gets smaller as the OS

algorithm creates harder cost matrices. Therefore requiring a fixed edge is either unduly pessimistic

or overly optimistic. If the fixed edge is too small, not enough progress is made in the initial rounds,

and if the edge is too large, Weak-Learner fails to meet the weak-learning condition in latter rounds.

We fix this by not making any assumption about the edges, but instead adaptively responding to the

edges returned by Weak-Learner. In the rest of the section we describe the adaptive procedure, and

the resulting loss bounds guaranteed by it.

The philosophy behind the adaptive algorithm is a boosting game where Booster and Weak

Learner no longer have opposite goals, but cooperate to reduce error as fast as possible. However, in
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order to create a clean abstraction and separate implementations of the boosting algorithms and the

weak learning procedures as much as possible, we assume neither of the players has any knowledge

of the details of the algorithm employed by the other player. In particular Booster may only assume

that Weak Learner’s strategy is barely strong enough to guarantee boosting. Therefore, Booster’s

demands on the weak classifiers returned by Weak Learner should be minimal, and it should send

the weak learning algorithm the “easiest” cost matrices that will ensure boostability. In turn, Weak

Learner may only assume a very weak Booster strategy, and therefore return a weak classifier that

performs as well as possible with respect to the cost matrix sent by Booster.

At a high level, the adaptive strategy proceeds as follows. At any iteration, based on the states of

the examples and number of remaining rounds of boosting, Booster chooses the game-theoretically

optimal cost matrix assuming only infinitesimal edges in the remaining rounds. Intuitively, Booster

has no high expectations of Weak Learner, and supplies it the easiest cost matrices with which it

may be able to boost. However, in the adaptive setting, Weak-Learner is no longer adversarial.

Therefore, although only infinitesimal edges are anticipated by Booster, Weak Learner cooperates

in returning weak classifiers that achieve as large edges as possible, which will be more than just

inifinitesimal. Based on the exact edge received in each round, Booster chooses the weight αt

adaptively to reach the most favourable state possible. Therefore, Booster plays game theoretically

assuming an adversarial Weak Learner and expecting only the smallest edges in the future rounds,

although Weak Learner actually cooperates, and Booster adaptively exploits this favorable behavior

as much as possible. This way the boosting algorithm remains robust to a poorly performing Weak

Learner, and yet can make use of a powerful weak learning algorithm whenever possible.

We next describe the details of the adaptive procedure. With variable weights we need to work

with the weighted state ft(i) of each example i, defined in (19). To keep the computations tractable,

we will only be working with the exponential loss Lexp(f) on the weighted states. We first describe

how Booster chooses the cost-matrix in each round. Following that we describe how it adaptively

computes the weights in each round based on the edge of the weak classifier received.

8.1 Choosing the Cost-matrix

As discussed before, at any iteration t and state ft Booster assumes that it will receive an infinitesimal

edge γ in each of the remaining rounds. Since the step size is a function of the edge, which in turn

is expected to be the same tiny value in each round, we may assume that the step size in each round

will also be some fixed value η. We are therefore in the setting of Theorem 21, which states that the

parameter η in the exponential loss function (32) should also be tiny to get any non-trivial bound.

But then the loss function satisfies the conditions in Lemma 19, and by Theorem 20, the game

theoretically optimal strategy remains the same whether we use the minimal condition or (C eor,Uγ).
When using the latter condition, the optimal choice of the cost-matrix at iteration t and state ft ,

according to (36), is

Ct(i, l) =

{
(eη −1)e ft−1(i, j)− ft−1(i,1) if l > 1,

(e−η −1)∑k
j=2 e ft−1(i, j)− ft−1(i,1) if l = 1.

Further, when using the condition (C eor,Uγ), the average potential of the states ft(i), according to

(34), is given by the average loss (37) of the state times κ(γ,η)T−t , where the function κ is defined

in (35). Our goal is to choose η as a function of γ so that κ(γ,η) is as small as possible. Now, there

is no lower bound on how small the edge γ may get, and, anticipating the worst, it makes sense to
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choose an infinitesimal γ, in the spirit of Freund (2001). Equation (35) then implies that the choice

of η should also be infinitesimal. Then the above choice of the cost matrix becomes the following

(after some rescaling):

Ct(i, l) = lim
η→0

Cη(i, l)
△

=
1

η

{
(eη −1)e ft−1(i, j)− ft−1(i,1) if l > 1,

(e−η −1)∑k
j=2 e ft−1(i, j)− ft−1(i,1) if l = 1.

=

{
e ft−1(i, j)− ft−1(i,1) if l > 1,

−∑k
j=2 e ft−1(i, j)− ft−1(i,1) if l = 1.

(56)

We have therefore derived the optimal cost matrix played by the adaptive boosting strategy, and we

record this fact.

Lemma 22 Consider the boosting game using the minimal weak learning condition (13). Then, in

iteration t at state ft , the game-theoretically optimal Booster strategy chooses the cost matrix Ct

given in (56).

We next show how to adaptively choose the weights αt .

8.2 Adaptively Choosing Weights

Once Weak Learner returns a weak classifier ht , Booster chooses the optimum weight αt so that the

resulting states ft = ft−1 +αt1ht are as favorable as possible, that is, minimizes the total potential

of its states. By our previous discussions, these are proportional to the total loss given by Zt =

∑m
i=1 ∑k

l=2 e ft(i,l)− ft(i,1). For any choice of αt , the difference Zt −Zt−1 between the total loss in rounds

t −1 and t is given by

(eαt −1) ∑
i∈S−

e ft−1(i,ht(i))− ft−1(i,1)−
(
1− e−αt

)
∑

i∈S+

Lexp(ft−1(i))

= (eαt −1)At
−−

(
1− e−αt

)
At
+

=
(
At
+e−αt +At

−eαt
)
−
(
At
++At

−
)
,

where S+ denotes the set of examples that ht classifies correctly, S− the incorrectly classified ex-

amples, and At
−,A

t
+ denote the first and second summations, respectively. Therefore, the task of

choosing αt can be cast as a simple optimization problem minimizing the previous expression. In

fact, the optimal value of αt is given by the following closed form expression

αt =
1

2
ln

(
At
+

At
−

)
. (57)

With this choice of weight, one can show (with some straightforward algebra) that the total loss of

the state falls by a factor less than 1. In fact the factor is exactly

(1− ct)−
√

c2
t −δ2

t , (58)

where

ct = (At
++At

−)/Zt−1,
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and δt is the edge of the returned classifier ht on the supplied cost-matrix Ct . Notice that the quantity

ct is at most 1, and hence the factor (58) can be upper bounded by
√

1−δ2
t . We next show how to

compute the edge δt . The definition of the edge depends on the weak learning condition being used,

and in this case we are using the minimal condition (13). Therefore the edge δt is the largest γ such

that the following still holds

Ct •1h ≤ max
B∈Beor

γ

Ct •B.

However, since Ct is the optimal cost matrix when using exponential loss with a tiny value of η, we

can use arguments in the proof of Theorem 20 to simplify the computation. In particular, eq. (52)

implies that the edge δt may be computed as the largest γ satisfying the following simpler inequality

δt = sup
{

γ : Ct •1ht
≤ Ct •Uγ

}

= sup

{
γ : Ct •1ht

≤−γ
m

∑
i=1

k

∑
l=2

e ft−1(i,l)− ft−1(i,1)

}

=⇒ δt = γ : Ct •1ht
=−γ

m

∑
i=1

k

∑
l=2

e ft−1(i,l)− ft−1(i,1)

=⇒ δt =
−Ct •1ht

∑m
i=1 ∑k

l=2 e ft−1(i,l)− ft−1(i,1)
=

−Ct •1ht

Zt

, (59)

where the first step follows by expanding Ct •Uγ. We have therefore an adaptive strategy which

efficiently reduces error. We record our results.

Lemma 23 If the weight αt in each round is chosen as in (57), and the edge δt is given by (59),

then the total loss Zt falls by the factor given in (58), which is at most
√

1−δ2
t .

The choice of αt in (57) is optimal, but depends on quantities other than just the edge δt . We

next show a way of choosing αt based only on δt that still causes the total loss to drop by a factor

of
√

1−δ2
t .

Lemma 24 Suppose cost matrix Ct is chosen as in (56), and the returned weak classifier ht has

edge δt , that is, Ct • 1ht
≤ Ct •Uδt

. Then choosing any weight αt > 0 for ht makes the loss Zt at

most a factor

1− 1

2
(eαt − e−αt )δt +

1

2
(eαt + e−αt −2)

of the previous loss Zt−1. In particular by choosing

αt =
1

2
ln

(
1+δt

1−δt

)
, (60)

the drop factor is at most
√

1−δ2
t .

Proof We borrow notation from earlier discussions. The edge-condition implies

At
−−At

+ = Ct •1ht
≤ Ct •Uδt

=−δtZt−1 =⇒ At
+−At

− ≥ δtZt−1.
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On the other hand, the drop in loss after choosing ht with weight αt is
(
1− e−αt

)
At
+− (eαt −1)At

−

=

(
eαt − e−αt

2

)(
At
+−At

−
)
−
(

eαt + e−αt −2

2

)(
At
++At

−
)
.

We have already shown that At
+−At

− ≥ δtZt−1. Further, At
++At

− is at most Zt−1. Therefore the loss

drops by a factor of at least

1− 1

2
(eαt − e−αt )δt +

1

2
(eαt + e−αt −2) =

1

2

{
(1−δt)e

αt +(1+δt)e
−αt
}
.

Tuning αt as in (60) causes the drop factor to be at least
√

1−δ2
t .

Algorithm 1 contains pseudocode for the adaptive algorithm, and includes both ways of choosing

αt . We call both versions of this algorithm AdaBoost.MM. With the approximate way of choos-

ing the step length in (61), AdaBoost.MM turns out to be identical to AdaBoost.M2 (Freund and

Schapire, 1997) or AdaBoost.MR (Schapire and Singer, 1999), provided the weak classifier space is

transformed in an appropriate way to be acceptable by AdaBoost.M2 or AdaBoost.MR. We empha-

size that AdaBoost.MM and AdaBoost.M2 are products of very different theoretical considerations,

and this similarity should be viewed as a coincidence arising because of the particular choice of loss

function, infinitesimal edge and approximate step size. For instance, when the step sizes are chosen

instead as in (62), the training error falls more rapidly, and the resulting algorithm is different.

As a summary of all the discussions in the section, we record the following theorem.

Theorem 25 The boosting algorithm AdaBoost.MM, shown in Algorithm 1, is the optimal strategy

for playing the adaptive boosting game, and is based on the minimal weak learning condition.

Further if the edges returned in each round are δ1, . . . ,δT , then the error after T rounds is (k −
1)∏T

t=1

√
1−δ2

t ≤ (k−1)exp
{
−(1/2)∑T

t=1 δ2
t

}
.

In particular, if a weak hypothesis space is used that satisfies the optimal weak learning condi-

tion (13), for some γ, then the edge in each round is large, δt ≥ γ, and therefore the error after T

rounds is exponentially small, (k−1)e−Tγ2/2.

The theorem above states that as long as the minimal weak learning condition is satisfied, the

error will decrease exponentially fast. Even if the condition is not satisfied, the error rate will keep

falling rapidly provided the edges achieved by the weak classifiers are relatively high. However, our

theory so far can provide no guarantees on these edges, and therefore it is not clear what is the best

error rate achievable in this case, and how quickly it is achieved. The assumptions of boostability,

and hence our minimal weak learning condition does not hold for the vast majority of practical data

sets, and as such it is important to know what happens in such settings. In particular, an important

requirement is empirical consistency, where we want that for any given weak classifier space, the

algorithm converge, if allowed to run forever, to the weighted combination of classifiers that mini-

mizes error on the training set. Another important criterion is universal consistency, which requires

that the algorithm converge, when provided sufficient training data, to the classifier combination

that minimizes error on the test data set. In the next section, we show that AdaBoost.MM satisfies

such consistency requirements. Both the choice of the minimal weak learning condition as well as

the setup of the adaptive game framework will play crucial roles in ensuring consistency. These

results therefore provide evidence that game theoretic considerations can have strong statistical im-

plications.
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Algorithm 1 AdaBoost.MM

Require: Number of classes k, number of examples m.

Require: Training set {(x1,y1), . . . ,(xm,ym)} with yi ∈ {1, . . . ,k} and xi ∈ X .

• Initialize m× k matrix f0(i, l) = 0 for i = 1, . . . ,m, and l = 1, . . . ,k.

for t = 1 to T do

• Choose cost matrix Ct as follows:

Ct(i, l) =

{
e ft−1(i,l)− ft−1(i,yi) if l 6= yi,

−∑l 6=yi
e ft−1(i, j)− ft−1(i,yi) if l = 1.

• Receive weak classifier ht : X →{1, . . . ,k} from weak learning algorithm

• Compute edge δt as follows:

δt =
−∑m

i=1Ct(i,ht(xi))

∑m
i=1 ∑l 6=yi

e ft−1(i,l)− ft−1(i,yi)

• Choose αt either as

αt =
1

2
ln

(
1+δt

1−δt

)
, (61)

or, for a slightly bigger drop in the loss, as

αt =
1

2
ln

(
∑i:ht(xi)=yi

∑l 6=yi
e ft−1(i,l)− ft−1(i,yi)

∑i:ht(xi) 6=yi
e ft−1(i,ht(xi))− ft−1(i,yi)

)
(62)

• Compute ft as:

ft(i, l) = ft−1(i, l)+αt1 [ht(xi) = l] .

end for

• Output weighted combination of weak classifiers FT : X ×{1, . . . ,k}→ R defined as:

FT (x, l) =
T

∑
t=1

αt1 [ht(x) = l] . (63)

• Based on FT , output a classifier HT : X →{1, . . . ,k} that predicts as

HT (x) =
k

argmax
l=1

FT (x, l).

9. Consistency of the Adaptive Algorithm

The goal in a classification task is to design a classifier that predicts with high accuracy on un-

observed or test data. This is usually carried out by ensuring the classifier fits training data well

without being overly complex. Assuming the training and test data are reasonably similar, one can

show that the above procedure achieves high test accuracy, or is consistent. Here we work in a
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probabilistic setting that connects training and test data by assuming both consist of examples and

labels drawn from a common, unknown distribution.

Consistency for multiclass classification in the probabilistic setting has been studied by Tewari

and Bartlett (2007), who show that, unlike in the binary setting, many natural approaches fail to

achieve consistency. In this section, we show that AdaBoost.MM described in the previous section

avoids such pitfalls and enjoys various consistency results. We begin by laying down some standard

assumptions and setting up some notation. Then we prove our first result showing that our algorithm

minimizes a certain exponential loss function on the training data at a fast rate. Next, we build upon

this result and improve along two fronts: firstly we change our metric from exponential loss to the

more relevant classification error metric, and secondly we show fast convergence on not just training

data, but also the test set. For the proofs, we heavily reuse existing machinery in the literature.

Throughout the rest of this section we consider the version of AdaBoost.MM that picks weights

according to the approximate rule in (61). All our results most probably hold with the other rule

for picking weights in (62) as well, but we did not verify that. These results hold without any

boostability requirements on the space H of weak classifiers, and are therefore widely applicable in

practice. While we do not assume any weak learning condition, we will require a fully cooperating

Weak Learner. In particular, we will require that in each round Weak Learner picks the weak

classifier suffering minimum cost with respect to the cost matrix provided by the boosting algorithm,

or equivalently achieves the highest edge as defined in (59). Such assumptions are both necessary

and standard in the literature, and are frequently met in practice.

In order to state our results, we will need to setup some notation. The space of examples will be

denoted by X , and the set of labels by Y = {1, . . . ,k}. We also fix a finite weak classifier space H

consisting of classifiers h : X → Y . We will be interested in functions F : X ×Y → R that assign

a score to every example and label pair. Important examples of such functions are the weighted

majority combinations (63) output by the adaptive algorithm. In general, any such combination

of the weak classifiers in space H is specified by some weight function α : H → R; the resulting

function is denoted by Fα : X ×Y → R, and satisfies:

Fα(x, l) = ∑
h∈H

α(h)1 [h(x) = l] .

We will be interested in measuring the average exponential loss of such functions. To measure this,

we introduce the r̂isk operator:

r̂isk(F)
△

=
1

m

m

∑
i=1

∑
l 6=yi

eF(xi,l)−F(xi,yi).

With this setup, we can now state our simplest consistency result, which ensures that the algorithm

converges to a weighted combination of classifiers in the space H that achieves the minimum expo-

nential loss over the training set at an efficient rate.

Lemma 26 The r̂isk of the predictions FT , as defined in (63), converges to that of the optimal

predictions of any combination of the weak classifiers in H at the rate O(1/T ):

r̂isk(FT )− inf
α:H →R

r̂isk(Fα)≤
C

T
,

where C is a constant depending only on the data set.
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A slightly stronger result would state that the average exponential loss when measured with respect

to the test set, and not just the empirical set, also converges. The test set is generated by some

target distribution D over example label pairs, and we introduce the riskD operator to measure the

exponential loss for any function F : X ×Y → R with respect to D:

riskD(F) = E(x,y)∼D

[
∑
l 6=y

eF(x,l)−F(x,y)

]
.

We show this stronger result holds if the function FT is modified to the function F̄T : X ×Y → R

that takes values in the range [0,−C], for some large constant C:

F̄T (x, l)
△

= max

{
−C,FT (x, l)−max

l′
FT (x, l

′)

}
. (64)

Lemma 27 If F̄T is as in (64), and the number of rounds T is set to Tm =
√

m, then its riskD

converges to the optimal value as m → ∞ with high probability:

Pr

[
riskD (F̄Tm

)≤ inf
F :X×Y →R

riskD(F)+O
(
m−c

)]
≥ 1− 1

m2
,

where c > 0 is some absolute constant, and the probability is over the draw of training examples.

We prove Lemmas 26 and 27 by demonstrating a strong correspondence between AdaBoost.MM

and binary AdaBoost, and then leveraging almost identical known consistency results for AdaBoost

(Bartlett and Traskin, 2007). Our proofs will closely follow the exposition in Chapter 12 of Schapire

and Freund (2012) on the consistency of AdaBoost, and are deferred to the appendix.

So far we have focused on riskD, but a more desirable consistency result would state that the

test error of the final classifier output by AdaBoost.MM converges to the Bayes optimal error. The

test error is measured by the errD operator, and is given by

errD(H) = Pr
(x,y)∼D

[H(x) 6= y] .

The Bayes optimal classifier Hopt is a classifier achieving the minimum error among all possible

classifying functions

errD(Hopt) = inf
H:X→Y

errD(H),

and we want our algorithm to output a classifier whose errD approaches errD(Hopt). In designing the

algorithm, our main focus was on reducing the exponential loss, captured by riskD and r̂isk. Unless

these loss functions are aligned properly with classification error, we cannot hope to achieve optimal

error. The next result shows that our loss functions are correctly aligned, or more technically Bayes

consistent. In other words, if a scoring function F : X ×Y →R is close to achieving optimal riskD,

then the classifier H : X → Y derived from it as follows:

H(x) ∈ argmax
l∈Y

F(x,y), (65)

also approaches the Bayes optimal error.
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Lemma 28 Suppose F is a scoring function achieving close to optimal risk

riskD(F)≤ inf
F ′:X×Y →R

riskD(F
′)+ ε, (66)

for some ε ≥ 0. If H is the classifier derived from it as in (65), then it achieves close to the Bayes

optimal error

errD(H)≤ errD(Hopt)+
√

2ε.

Proof The proof is similar to that of Theorem 12.1 in Schapire and Freund (2012), which in turn is

based on the work by Zhang (2004) and Bartlett et al. (2006). Let p(x) = Pr(x′,y′)∼D (x′ = x) denote

the the marginalized probability of drawing example x from D, and let px
y = Pr(x′,y′)∼D [y′ = y|x′ = x]

denote the conditional probability of drawing label y given we have drawn example x. We first

rewrite the difference in errors between H and Hopt using these probabilities. Firstly note that the

accuracy of any classifier H ′ is given by

∑
x∈X

D(x,H ′(x)) = ∑
x∈X

p(x)px
H ′(x).

If X ′ is the set of examples where the predictions of H and Hopt differ, X ′=
{

x ∈ X : H(x) 6= Hopt(x)
}

,

then we may bound the error differences as

errD(H)− errD(Hopt) = ∑
x∈X ′

p(x)
(

px
Hopt(x)

− px
H(x)

)
. (67)

We next relate this expression to the difference of the losses.

Notice that for any scoring function F ′, the riskD can be rewritten as follows :

riskD(F
′) = ∑

x∈X

p(x) ∑
l<l′

{
px

l eF ′(x,l′)−F ′(x,l)+ px
l′e

F ′(x,l)−F ′(x,l′)
}
.

Denote the inner summation in curly brackets by L
l,l′

F ′ (x), and notice this quantity is minimized if

eF ′(x,l)−F ′(x,l′) =
√

px
l /px

l′ , i.e., if F ′(x, l)−F ′(x, l′) = 1
2

ln px
l − 1

2
ln px

l′ .

Therefore, defining F∗(x, l) = 1
2

ln px
l leads to a riskD minimizing function F∗. Furthermore, for any

example and pair of labels l, l′, the quantity L
l,l′

F∗ (x) is at most L
l,l′

F (x), and therefore the difference

in losses of F∗ and F may be lower bounded as follows:

ε ≥ riskD(F)− riskD(F
∗) = ∑

x∈X

p(x) ∑
l 6=l′

(
L

l,l′

F −L
l,l′

F∗

)

≥ ∑
x∈X ′

p(x)
{

L
H(x),Hopt(x)
F −L

H(x),Hopt(x)
F∗

}
. (68)

We next study the term in the curly brackets for a fixed x. Let A and B denote H(x) and Hopt(x),

respectively. We have already seen that L
A,B
F∗ = 2

√
px

A px
B. Further, by definition of Bayes optimality,
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px
A ≥ px

B. On the other hand, since x ∈ X ′, we know that B 6= A, and hence, F(x,A) ≥ F(x,B). Let

eF(x,B)−F(x,A) = 1+η, for some η ≥ 0. The quantity L
A,B
F may be lower bounded as:

L
A,B
F = px

AeF(x,B)−F(x,A)+ px
BeF(x,A)−F(x,B)

= (1+η)px
A +(1+η)−1 px

B

≥ (1+η)px
A +(1−η)px

B

= px
A + px

B +η(px
A − px

B)≥ px
A + px

B.

Combining we get

L
A,B
F −L

A,B
F∗ ≥ px

A + px
B −2

√
px

A px
B =

(√
px

A −
√

px
B

)2

.

Plugging back into (68) we get

∑
x∈X ′

p(x)

(√
px

H(x)−
√

px
Hopt(x)

)2

≤ ε. (69)

Now we connect (67) to the previous expression as follows

{
errD(H)− errD(Hopt)

}2

=

{
∑

x∈X ′
p(x)

(
px

Hopt(x)
− px

H(x)

)}2

≤
(

∑
x∈X ′

p(x)

)(
∑

x∈X ′
p(x)

(
px

Hopt(x)
− px

H(x)

)2

)
(Cauchy-Schwartz)

≤ ∑
x∈X ′

p(x)

(√
px

Hopt(x)
−
√

px
H(x)

)2(√
px

Hopt(x)
+
√

px
H(x)

)2

(70)

≤ 2 ∑
x∈X ′

p(x)

(√
px

Hopt(x)
−
√

px
H(x)

)2

(71)

≤ 2ε, (by (69))

where (70) holds since

∑
x∈X ′

p(x) = Pr
(x′,y′)∼D

[
x′ ∈ X ′]≤ 1,

and (71) holds since

px
H(x)+ px

Hopt(x)
= Pr

(x′,y′)∼D

[
y′ ∈

{
H(x),Hopt(x)

}
|x
]
≤ 1

=⇒
√

px
H(x)+

√
px

Hopt(x)
≤

√
2.

Therefore, errD(H)− errD(Hopt)≤
√

2ε.

Note that the classifier H̄T , derived from the truncated scoring function F̄T in the manner provided

in (65), makes identical predictions to, and hence has the same errD as, the classifier HT output by
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the adaptive algorithm. Further, Lemma 27 seems to suggest that F̄T satisfies the condition in (66),

which, combined with our previous observation errD(H) = errD(H̄T ), would imply HT approaches

the optimal error. However, the condition (66) requires achieving optimal risk over all scoring

functions, and not just ones achievable as a combination of weak classifiers in H . Therefore, in

order to use Lemma 28, we require the weak classifier space to be sufficiently rich, so that some

combination of the weak classifiers in H attains riskD arbitrarily close to the minimum attainable

by any function:

inf
α:H →R

riskD(Fα) = inf
F :X×Y →R

riskD(F). (72)

The richness condition, along with our previous arguments and Lemma 27, immediately imply the

following result.

Theorem 29 If the weak classifier space H satisfies the richness condition (72), and the number of

rounds T is set to
√

m, then the error of the final classifier HT approaches the Bayes optimal error:

Pr
[
errD

(
H√

m

)
≤ errD(Hopt)+O

(
m−c

)]
≥ 1− 1

m2
,

where c > 0 is some positive constant, and the probability is over the draw of training examples.

A consequence of the theorem is our strongest consistency result:

Corollary 30 Let Hopt be the Bayes optimal classifier, and let the weak classifier space H satisfy

the richness condition (72). Suppose m example and label pairs {(x1,y1), . . . ,(xm,ym)} are sampled

from the distribution D, the number of rounds T is set to be
√

m, and these are supplied to Ada-

Boost.MM. Then, in the limit m → ∞, the final classifier H√
m output by AdaBoost.MM achieves the

Bayes optimal error almost surely:

Pr
[{

lim
m→∞

errD(H√
m)
}
= errD(Hopt)

]
= 1,

where the probability is over the randomness due to the draw of training examples.

The proof of Corollary 30, based on the Borel-Cantelli Lemma, is very similar to that of Corol-

lary 12.3 in Schapire and Freund (2012), and so we omit it. When k = 2, AdaBoost.MM is identical

to AdaBoost. For Theorem 29 to hold for AdaBoost, the richness assumption (72) is necessary,

since there are examples due to Long and Servedio (2010) showing that the theorem may not hold

when that assumption is violated.

Although we have seen that technically AdaBoost.MM is consistent under broad assumptions,

intuitively perhaps it is not clear what properties were responsible for this desirable behavior. We

next briefly study the high level ingredients necessary for consistency in boosting algorithms.

9.1 Key Ingredients for Consistency

We show here how both the choice of the loss function as well as the weak learning condition play

crucial roles in ensuring consistency. If the loss function were not Bayes consistent as in Lemma 28,

driving it down arbitrarily could still lead to high test error. For example, the loss employed by

SAMME (Zhu et al., 2009) does not upper bound the error, and therefore although it can manage to
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drive down its loss arbitrarily when supplied by the data set discussed in Figure 1, although its error

remains high.

Equally important is the weak learning condition. Even if the loss function is chosen to be

error, so that it is trivially Bayes consistent, choosing the wrong weak learning condition could

lead to inconsistency. In particular, if the weak learning condition is stronger than necessary, then,

even on a boostable data set where the error can be driven to zero, the boosting algorithm may get

stuck prematurely because its stronger than necessary demands cannot be met by the weak classifier

space. We have already seen theoretical examples of such data sets, and we will see some practical

instances of this phenomenon in the next section.

On the other hand, if the weak learning condition is too weak, then a lazy Weak Learner may

satisfy the Booster’s demands by returning weak classifiers belonging only to a non-boostable subset

of the available weak classifier space. For instance, consider again the data set in Figure 1, and

assume that this time the weak classifier space is much richer, and consists of all possible classifying

functions. However, in any round, Weak Learner searches through the space, first trying hypotheses

h1 and h2 shown in the figure, and only if neither satisfy the Booster, search for additional weak

classifiers. In that case, any algorithm using SAMME’s weak learning condition, which is known

to be too weak and satisfiable by just the two hypotheses {h1,h2}, would only receive h1 or h2 in

each round, and therefore be unable to reach the optimum accuracy. Of course, if the Weak Learner

is extremely generous and helpful, then it may return the right collection of weak classifiers even

with a null weak learning condition that places no demands on it. However, in practice, many

Weak Learners used are similar to the lazy weak learner described since these are computationally

efficient.

To see the effect of inconsistency arising from too weak learning conditions in practice, we

need to test boosting algorithms relying on such data sets on significantly hard data sets, where

only the strictest Booster strategy can extract the necessary service from Weak Learner for creating

an optimal classifier. We did not include such experiments, and it will be an interesting empiri-

cal conjecture to be tested in the future. However, we did include experiments that illustrate the

consequence of using too strong conditions, and we discuss those in the next section.

10. Experiments

In the final section of this paper, we report preliminary experimental results on 13 UCI data sets:

letter, nursery, pendigits, satimage, segmentation, vowel, car, chess, connect4, forest, magic04,

poker, abalone. These data sets are all multiclass except for magic04, have a wide range of sizes,

contain all combinations of real and categorical features, have different number of examples to

number of features per example ratios, and are drawn from a variety of real-life situations. A

summary of each data set is provided in Figure 7. Most sets come with prespecified train and test

splits which we use; if not, we picked a random 4 : 1 split. Sometimes the prespecified test set was

too large compared to the training set, and we restricted ourselves to the first ten thousand examples

of the specified test set. Throughout this section by MM we refer to the version of AdaBoost.MM

studied in the consistency section, which uses the approximate step size (61).

There were two kinds of experiments. In the first, we took a standard implementation M1 of

AdaBoost.M1 with C4.5 as weak learner, and the Boostexter implementation MH of AdaBoost.MH

using stumps (Schapire and Singer, 2000), and compared it against our method MM with a naive

greedy tree-searching weak-learner Greedy. We will refer to the number of leaves as the size of
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data set classes test train discrete real

abalone* 28 1044 3133 1 7

car 4 345 1383 6 0

chess 2 799 2397 36 0

connect4 3 13511 54046 42 0

forest* 7 10000* 15120 44 10

letter 26 4000 16000 0 16

magic04 2 3804 15216 0 10

nursery 5 2591 10369 8 0

pendigits* 10 3498 7494 0 16

poker* 10 10000* 25010 5 5

satimage* 6 2000 4435 0 36

segmentation* 7 2100 210 0 19

vowel* 11 462 528 0 10

Figure 7: Summaries of the data sets used in the experiments. Each row contains the name of

data set, number of labels, number of test examples, and training examples, and number

of discrete and real features, in that order. The data sets that come with prespecified

training-test splits are marked with an asterisk. When the prespecified test set was too

large compared to the training set, only the first ten thousand examples were used. These

test set sizes are marked with an asterisk.

the tree. Note that since the trees are full binary trees, with each internal node having exactly two

children, the total number of nodes in the tree is one less than twice the number of leaves. When

C4.5 is run as the weak learner, it grows the tree till a desired accuracy is reached in each round,

and thereby automatically picks the tree sizes. Those sizes were used to pick the maximum size of

the trees that Greedy was allowed to return when run as a weak learner by MM, so that both M1 and

MM output ensembles of trees of roughly similar sizes. The test-errors after 500 rounds of boosting

for each algorithm and data set are shown in Figure 8. The performance is comparable with M1 and

far better than MH (understandably since stumps are far weaker than trees), even though our weak-

learner is very naive. The convergence rates of error with rounds of M1 and MM are also comparable,

as shown in Figure 9 (we omitted the curve for MH since it lay far above both M1 and MM).

We next investigated how each algorithm performs with less powerful weak-learners. We mod-

ified MH so that it uses a tree returning a single multiclass prediction on each example. For MH and

MM we used the Greedy weak learner, while for M1 we used a more powerful-variant Greedy-Info

whose greedy criterion was information gain rather than error or cost (we also ran M1 on top of

Greedy but Greedy-Info consistently gave better results so we only report the latter). The reason

for using weak learners that optimize different cost functions with the different boosting algorithms

is as follows. M1 is based on the error-metric, where every example incurs a penalty of 0 when

classified correctly and 1 when classified incorrectly. Information gain, measuring how “impure”

the nodes resulting from a particular split are, is well aligned with the error metric. However, MH

and MM use more general cost functions, and we could not come up with appropriate generalizations

of information gain for these setting. So we just used the cost itself in deciding how to grow the de-
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data set MH M1 MM

abalone 0.732 0.751 0.750

car 0.264 0.336 0.159

chess 0.025 0.003 0.005

connect4 0.321 0.306 0.282

forest 0.326 0.238 0.239

letter 0.146 0.031 0.027

magic04 0.148 0.117 0.118

nursery 0.081 0.164 0.196

pendigits 0.046 0.026 0.095

poker 0.497 0.341 0.228

satimage 0.121 0.088 0.093

segmentation 0.050 0.053 0.149

vowel 0.569 0.485 0.567

Figure 8: This is a table of the final test-errors of standard implementations of MH, M1 and MM after

500 rounds of boosting on different data sets. Both M1 and MM achieve comparable error,

which is often smaller than that achieved by MH. This is because M1 and MM used trees of

comparable sizes which were often much larger and powerful than the decision stumps

that MH boosted.

cision tree. We tried all tree-sizes in the set {10, 20, 50, 100, 200, 500, 1000, 2000, 4000} up to the

tree-size used by M1 on C4.5 for each data-set. We plotted the error of each algorithm against tree

size for each data-set in Figure 10. As predicted by our theory, our algorithm succeeds in boosting

the accuracy even when the tree size is too small to meet the stronger weak learning assumptions of

the other algorithms. More insight is provided by plots in Figure 11 of the rate of convergence of

error with rounds when the tree size allowed is very small (5). Both M1 and MH drive down the error

for a few rounds. But since boosting keeps creating harder distributions, very soon the small-tree

learning algorithms Greedy and Greedy-Info are no longer able to meet the excessive require-

ments of M1 and MH respectively. However, our algorithm makes more reasonable demands that are

easily met by Greedy.

11. Conclusion and Discussion

In summary, we create a new framework for studying multiclass boosting. This framework is very

general and captures the weak learning conditions implicitly used by many earlier multiclass boost-

ing algorithms as well as novel conditions, including the minimal condition under which boosting is

possible. We also show how to design boosting algorithms relying on these weak learning conditions

that drive down training error rapidly. These algorithms are the optimal strategies for playing cer-

tain two player games. Based on this game-theoretic approach, we also design a multiclass boosting

algorithm that is consistent, that is, approaches the minimum empirical risk, and under some basic

assumptions, the Bayes optimal test error. Preliminary experiments show that this algorithm can

achieve much lower error compared to existing algorithms when used with very weak classifiers.
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Figure 9: Plots of the rates at which M1(black,dashed) and MM(red,solid) drive down test-error on

different data-sets when using trees of comparable sizes as weak classifiers. M1 called

C4.5, and MM called Greedy, respectively, as weak-learner. The tree sizes returned by

C4.5 were used as a bound on the size of the trees that Greedy was allowed to return.

This bound on the tree-size depended on the data set, and are shown next to the data set

labels.

The notion of game-theoretic equivalence in Section 7.1 is based upon a weak learner that may

return any weak hypothesis, which is absurd from a practical viewpoint. However, designing op-

timal boosting algorithms separately for different kinds of weak learners, which we leave as an

open problem, will lead to a much more complex theory. Further, it is not clear what the addi-

tional gain (in terms of improvement in loss bounds) may be. Our philosophy here was to take the

ultra-conservative approach, so that the resulting boosting algorithm enjoys bounds that hold under

all settings. Theorem 14 then says, that in that ultra-conservative framework, the best algorithm

remains the same if you change the weak-learning condition to another ”equivalent” condition.

Although we can efficiently compute the game-theoretically optimal strategies under most con-

ditions, when using the minimal weak learning condition, and non-convex 0-1 error as loss function,
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Figure 10: For this figure, M1(black, dashed), MH(blue, dotted) and MM(red,solid) were designed to

boost decision trees of restricted sizes. The final test-errors of the three algorithms after

500 rounds of boosting are plotted against the maximum tree-sizes allowed for the weak

classifiers. MM achieves much lower error when the weak classifiers are very weak, that

is, with smaller trees.

we require exponential computational time to solve the corresponding boosting games. Boosting

algorithms based on error are potentially far more noise tolerant than those based on convex loss

functions, and finding efficiently computable near-optimal strategies in this situation is an impor-

tant problem left for future work. Further, we primarily work with weak classifiers that output a

single multiclass prediction per example, whereas weak hypotheses that make multilabel multiclass

predictions are typically more powerful. We believe that multilabel predictions do not increase

the power of the weak learner in our framework, and our theory can be extended without much

work to include such hypotheses, but we do not address this here. Finally, it will be interesting to

see if the notion of minimal weak learning condition can be extended to boosting settings beyond

classification, such as ranking.
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Figure 11: A plot of how fast the test-errors of the three algorithms drop with rounds when the weak

classifiers are trees with a size of at most 5. Algorithms M1 and MH make strong demands

which cannot be met by the extremely weak classifiers after a few rounds, whereas MM

makes gentler demands, and is hence able to drive down error through all the rounds of

boosting.
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Appendix A. Omitted Proofs

We include proofs and details that were omitted earlier in the paper.

A.1 Optimality of the OS Strategy

Here we prove Theorem 9. The proof of the upper bound on the loss is very similar to the proof

of Theorem 2 in Schapire (2001). For the lower bound, a similar result is proved in Theorem 3 in

Schapire (2001). However, the proof relies on certain assumptions that may not hold in our setting,

and we instead follow the more direct lower bounding techniques in Section 5 of Mukherjee and

Schapire (2010).

We first show that the average potential of states does not increase in any round. The dual form

of the recurrence (21) and the choice of the cost matrix Ct in (22) together ensure that for each

example i,

φ
B(i)
T−t (st(i)) =

k
max
l=1

{
φ

B(i)
T−t−1 (st(i)+ el)− (Ct(i)(l)−〈Ct(i),B(i)〉)

}

≥ φ
B(i)
T−t−1

(
st(i)+ eht(xi)

)
− (Ct(i,ht(xi))−〈Ct(i),B(i)〉) .

Summing up the inequalities over all examples, we get

m

∑
i=1

φ
B(i)
T−t−1

(
st(i)+ eht(xi)

)
≤

m

∑
i=1

φ
B(i)
T−t (st(i))+

m

∑
i=1

{Ct(i,ht(xi))−〈Ct(i),B(i)〉}

The first two summations are the total potentials in round t + 1 and t, respectively, and the third

summation is the difference in the costs incurred by the weak-classifier ht returned in iteration t and

the baseline B. By the weak learning condition, this difference is non-positive, implying that the

average potential does not increase.

Next we show that the bound is tight. In particular choose any accuracy parameter ε > 0, and

total number of iterations T , and let m be as large as in (25). We show that in any iteration t ≤ T ,

based on Booster’s choice of cost-matrix C, an adversary can choose a weak classifier ht ∈ H all

such that the weak learning condition is satisfied, and the average potential does not fall by more

than an amount ε/T . In fact, we show how to choose labels l1, . . . , lm such that the following hold

simultaneously:

m

∑
i=1

C(i, li) ≤
m

∑
i=1

〈C(i),B(i)〉 (73)

m

∑
i=1

φ
B(i)
T−t (st(i)) ≤ mε

T
+

m

∑
i=1

φ
B(i)
T−t−1 (st(i)+ eli) (74)

This will imply that the final potential or loss is at least ε less than the bound in (23).
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We first construct, for each example i, a distribution pi ∈ ∆{1, . . . ,k} such that the size of the

support of pi is either 1 or 2, and

φ
B(i)
T−t(st(i)) = El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
. (75)

To satisfy (75), by (17), we may choose pi as any optimal response of the max player in the minimax

recurrence when the min player chooses C(i):

pi ∈ argmax
p∈Pi

{
El∼p

[
φ

B(i)
t−1 (s+ el)

]}
(76)

where Pi = {p ∈ ∆{1, . . . ,k} : El∼p [C(i, l)]≤ 〈C(i),B(i)〉} . (77)

The existence of pi is guaranteed, since, by Lemma 7, the polytope Pi is non-empty for each i. The

next result shows that we may choose pi to have a support of size 1 or 2.

Lemma 31 There is a pi satisfying (76) with either 1 or 2 non-zero coordinates.

Proof Let p∗ satisfy (76), and let its support set be S. Let µi denote the mean cost under this

distribution:

µi = El∼p∗ [C(i, l)]≤ 〈C(i),B(i)〉 .
If the support has size at most 2, then we are done. Further, if each non-zero coordinate l ∈ S of

p∗ satisfies C(i, l) = µi, then the distribution pi that concentrates all its weight on the label lmin ∈ S

minimizing φ
B(i)
t−1 (s+ elmin) is an optimum solution with support of size 1. Otherwise, we can pick

labels lmin
1 , lmin

2 ∈ S such that

C(i, lmin
1 )< µi <C(i, lmin

2 ).

Then we may choose a distribution q supported on these two labels with mean µi:

El∼q [C(i, l)] = q(lmin
1 )C(i, lmin

1 )+q(lmin
2 )C(i, lmin

2 ) = µi.

Choose λ as follows:

λ = min

{
p∗(lmin

1 )

q(lmin
1 )

,
p∗(lmin

2 )

q(lmin
2 )

}
,

and write p∗ = λq+(1−λ)p. Then both p,q belong to the polytope Pi, and have strictly fewer non-

zero coordinates than p∗. Further, by linearity, one of q,p is also optimal. We repeat the process on

the new optimal distribution till we find one which has only 1 or 2 non-zero entries.

We next show how to choose the labels l1, . . . , lm using the distributions pi. For each i, let{
l+i , l

−
i

}
be the support of pi so that

C
(
i, l+i

)
≤ El∼pi

[C(i, l)]≤C
(
i, l−i

)
.

(When pi has only one non-zero element, then l+i = l−i .) For brevity, we use p+i and p−i to denote

pi

(
l+i
)

and pi

(
l−i
)
, respectively. If the costs of both labels are equal, we assume without loss of

generality that pi is concentrated on label l−i :

C
(
i, l−i

)
−C

(
i, l−i

)
= 0 =⇒ p+i = 0, p−i = 1. (78)
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We will choose each label li from the set
{

l−i , l
+
i

}
. In fact, we will choose a partition S+,S−

of the examples 1, . . . ,m and choose the label depending on which side Sξ, for ξ ∈ {−,+}, of the

partition element i belongs to:

li = l
ξ
i if i ∈ Sξ.

In order to guide our choice for the partition, we introduce parameters ai,bi as follows:

ai = C(i, l−i )−C(i, l+i ),

bi = φ
B(i)
T−t−1

(
st(i)+ el−i

)
−φ

B(i)
T−t−1

(
st(i)+ el+i

)
.

Notice that for each example i and each sign-bit ξ ∈ {−1,+1}, we have the following relations:

C(i, l
ξ
i ) = El∼pi

[C(i, l)]−ξ(1− p
ξ
i )ai (79)

φ
B(i)
T−t−1

(
st(i)+ e

l
ξ
i

)
= El∼pi

[
φ

B(i)
T−t(i, l)

]
−ξ(1− p

ξ
i )bi. (80)

Then the cost incurred by the choice of labels can be expressed in terms of the parameters ai,bi as

follows:

∑
i∈S+

C(i, l+i )+ ∑
i∈S−

C(i, l−i ) = ∑
i∈S+

{
El∼pi

[C(i, l)]−ai + p+i ai

}

+ ∑
i∈S−

{
El∼pi

[C(i, l)]+ p+i ai

}

=
m

∑
i=1

El∼pi
[C(i, l)]+

(
m

∑
i=1

p+i ai − ∑
i∈S+

ai

)

≤
m

∑
i=1

〈C(i),B(i)〉+
(

m

∑
i=1

p+i ai − ∑
i∈S+

ai

)
, (81)

where the first equality follows from (79), and the inequality follows from the constraint on pi in

(77). Similarly, the potential of the new states is given by

∑
i∈S+

φ
B(i)
T−t−1

(
st(i)+ el+i

)
+ ∑

i∈S−

φ
B(i)
T−t−1

(
st(i)+ el−i

)

= ∑
i∈S+

{
El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
−bi + p+i bi

}

+ ∑
i∈S−

{
El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
+ p+i bi

}

=
m

∑
i=1

El∼pi

[
φ

B(i)
T−t−1 (st(i)+ el)

]
+

(
m

∑
i=1

p+i bi − ∑
i∈S+

bi

)

=
m

∑
i=1

φ
B(i)
T−t (st(i))+

(
m

∑
i=1

p+i bi − ∑
i∈S+

bi

)
, (82)

where the first equality follows from (80), and the last equality from an optimal choice of pi satis-

fying (75). Now, (81) and (82) imply that in order to satisfy (73) and (74), it suffices to choose a
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subset S+ satisfying

∑
i∈S+

ai ≥
m

∑
i=1

p+i ai, ∑
i∈S+

bi ≤
mε

T
+

m

∑
i=1

p+i bi. (83)

We simplify the required conditions. Notice the first constraint tries to ensure that S+ is big, while

the second constraint forces it to be small, provided the bi are non-negative. However, if bi < 0

for any example i, then adding this example to S+ only helps both inequalities. In other words, if

we can always construct a set S+ satisfying (83) in the case where the bi are non-negative, then we

may handle the more general situation by just adding the examples i with negative bi to the set S+
that would be constructed by considering only the examples {i : bi ≥ 0}. Therefore we may assume

without loss of generality that the bi are non-negative. Further, assume (by relabeling if necessary)

that a1, . . . ,am′ are positive and am′+1, . . .am = 0, for some m′ ≤ m. By (78), we have p+i = 0 for

i > m′. Therefore, by assigning the examples m′ + 1, . . . ,m to the opposite partition S−, we can

ensure that (83) holds if the following is true:

∑
i∈S+

ai ≥
m′

∑
i=1

p+i ai, (84)

∑
i∈S+

bi ≤ m′
max
i=1

|bi|+
m′

∑
i=1

p+i bi, (85)

where, for (85), we additionally used that, by the choice of m (25) and the bound on loss variation

(24), we have
mε

T
≥ �(L,T )≥ bi for i = 1, . . . ,m.

The next lemma shows how to construct such a subset S+, and concludes our lower bound proof.

Lemma 32 Suppose a1, . . . ,am′ are positive and b1, . . . ,bm′ are non-negative reals, and p+1 , . . . , p+m′ ∈
[0,1] are probabilities. Then there exists a subset S+ ⊆ {1, . . . ,m′} such that (84) and (85) hold.

Proof Assume, by relabeling if necessary, that the following ordering holds:

a(1)−b(1)

a(1)
≥ ·· · ≥ a(m′)−b(m′)

a(m′)
. (86)

Let I ≤ m′ be the largest integer such that

a1 +a2 + · · ·+aI <
m′

∑
i=1

p+i ai. (87)

Since the p+i are at most 1, I is in fact at most m′−1. We will choose S+ to be the first I+1 examples

S+ = {1, . . . , I +1}. Observe that (84) follows immediately from the definition of I. Further, (85)

will hold if the following is true

b1 +b2 + · · ·+bI ≤
m′

∑
i=1

p+i bi, (88)
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since the addition of one more example I +1 can exceed this bound by at most bI+1 ≤ maxm′
i=1|bi|.

We prove (88) by showing that the left hand side of this equation is not much more than the left

hand side of (87). We first rewrite the latter summation differently. The inequality in (87) implies

we can pick p̃+1 , . . . , p̃+m′ ∈ [0,1] (e.g., by simply scaling the p+i ’s appropriately) such that

a1 + . . .+aI =
m′

∑
i=1

p̃+i ai (89)

for i = 1, . . . ,m′: p̃+i ≤ pi. (90)

By subtracting off the first I terms in the right hand side of (89) from both sides we get

(1− p̃+1 )a1 + · · ·+(1− p̃+I )aI = p̃+I+1aI+1 + · · ·+ p̃+m′am′ .

Since the terms in the summations are non-negative, we may combine the above with the ordering

property in (86) to get

(1− p̃+1 )a1

(
a1 −b1

a1

)
+ · · ·+(1− p̃+I )aI

(
aI −bI

aI

)

≥ p̃+I+1aI+1

(
aI+1 −bI+1

aI+1

)
+ · · ·+ p̃+m′am′

(
am′ −bm′

am′

)
. (91)

Adding the expression

p̃+1 a1

(
a1 −b1

a1

)
+ · · ·+ p̃+I aI

(
aI −bI

aI

)

to both sides of (91) yields

I

∑
i=1

ai

(
ai −bi

ai

)
≥

m′

∑
i=1

p̃+i ai

(
ai −bi

ai

)

i.e.,
I

∑
i=1

ai −
I

∑
i=1

bi ≥
m′

∑
i=1

p̃+i ai −
m′

∑
i=1

p̃+i bi

i.e.,
I

∑
i=1

bi ≤
m′

∑
i=1

p̃+i bi, (92)

where the last inequality follows from (89). Now (88) follows from (92) using (90) and the fact that

the bi’s are non-negative.

This completes the proof of the lower bound.

A.2 Consistency Proofs

Here we sketch the proofs of Lemmas 26 and 27. Our approach will be to relate our algorithm to

AdaBoost and then use relevant known results on the consistency of AdaBoost. We first describe

the correspondence between the two algorithms, and then state and connect the relevant results on

AdaBoost to the ones in this section.

For any given multiclass data set and weak classifier space, we will obtain a transformed binary

data set and weak classifier space, such that the run of AdaBoost.MM on the original data set will be
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in perfect correspondence with the run of AdaBoost on the transformed data set. In particular, the

loss and error on both the training and test set of the combined classifiers produced by our algorithm

will be exactly equal to those produced by AdaBoost, while the space of functions and classifiers

on the two data sets will be in correspondence.

Intuitively, we transform our multiclass classification problem into a single binary classification

problem in a way similar to the all-pairs multiclass to binary reduction. A very similar reduction

was carried out by Freund and Schapire (1997). Borrowing their terminology, the transformed data

set roughly consists of mislabel triples (x,y, l) where y is the true label of the example and l is an

incorrect example. The new binary label of a mislabel triple is always −1, signifying that l is not the

true label. A multiclass classifier becomes a binary classifier that predict ±1 on the mislabel triple

(x,y, l) depending on whether the prediction on x matches label l; therefore error on the transformed

binary data set is low whenever the multiclass accuracy is high. The details of the transformation

are provided in Figure 12.

Some of the properties between the functions and their transformed counterparts are described

in the next lemma, showing that we are essentially dealing with similar objects.

Lemma 33 The following are identities for any scoring function F : X ×Y → R and weight func-

tion α : H → R:

r̂isk(Fα) =
˜̂
risk

(
F̃α̃

)
(93)

riskD (F̄) = r̃iskD

(
¯̃
F
)
. (94)

The proofs involve doing straightforward algebraic manipulations to verify the identities and are

omitted.

The next lemma connects the two algorithms. We show that the scoring function output by

AdaBoost when run on the transformed data set is the transformation of the function output by our

algorithm. The proof again involves tedious but straightforward checking of details and is omitted.

Lemma 34 If AdaBoost.MM produces scoring function Fα when run for T rounds with the training

set S and weak classifier space H , then AdaBoost produces the scoring function F̃α̃ when run for T

rounds with the training set S̃ and space H̃ . We assume that for both the algorithms, Weak Learner

returns the weak classifier in each round that achieves the maximum edge. Further we consider the

version of AdaBoost.MM that chooses weights according to the approximate rule (61).

We next state the result for AdaBoost corresponding to Lemma 26 , which appears in Mukherjee

et al. (2011).

Lemma 35 (Theorem 8 in Mukherjee et al. (2011)) Suppose AdaBoost produces the scoring func-

tion F̃α̃ when run for T rounds with the training set S̃ and space H̃ . Then

˜̂
risk

(
F̃α̃

)
≤ inf

β̃:H̃ →R

˜̂
risk

(
F̃̃

β

)
+C/T,

where the constant C depends only on the data set.

The previous lemma, along with (93) immediately proves Lemma 26. The result for AdaBoost

corresponding to Lemma 27 appears in Schapire and Freund (2012).
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AdaBoost.MM AdaBoost

Labels

Y = {1, . . . ,k} Ỹ = {−1,+1}

Examples

X X̃ = X × ((Y ×Y )\{(y,y) : y ∈ Y })

Weak classifiers

h : X → Y h̃ : X̃ →{−1,0,+1}, where

h̃(x,y, l) = 1 [h(x) = l]−1 [h(x) = y]

Classifier space

H H̃ =
{

h̃ : h ∈ H
}

Scoring function

F : X ×Y → R F̃ : X̃ → R where

F̃(x,y, l) = F(x, l)−F(x,y)

Clamped function

F̄(x,y) = ¯̃
F(x,y, l) = F̃(x,y, l), if |F̃(x,y, l)| ≤C

max{−C,F(x, l)−maxl′ FT (x, l
′)} ¯̃

F(x,y, l) =C, if |F̃(x,y, l)|>C

Classifier weights

α : H → R α̃ : H̃ → R where

α̃
(

h̃
)
= α(h)

Combined hypo-

thesis

Fα where F̃α̃ where

Fα(x, l) = ∑h∈H α(h)1 [h(x) = l] F̃α̃(x,y, l) = ∑
h̃∈H̃

α̃
(

h̃
)

h̃(x,y, l)

Training set

S = {(xi,yi) : 1 ≤ i ≤ m} S̃ =

{((xi,yi, l),ξ) : ξ =−1, l 6= yi,1 ≤ i ≤ m}

Test distribution

D over X ×Y D̃ over X̃ × Ỹ where

D̃((x,y, l),−1) = D(x,y)/(k−1)

D̃((x,y, l),+1) = 0

Empirical risk

r̂isk(F) =
˜̂
risk

(
F̃
)

1
m ∑m

i=1 ∑l 6=yi
eF(xi,l)−F(xi,yi) 1

m(k−1) ∑m
i=1 ∑l 6=yi

e−ξF̃(xi,yi,l)

Test risk

riskD(F) = r̃iskD

(
F̃
)
=

E(x,y)∼D

[
∑l 6=y eF(x,l)−F(x,y)

]
E((x,y,l),ξ)∼D̃

[
e−ξF̃(x,y,l)

]

Figure 12: Details of transformation between AdaBoost.MM and AdaBoost.

Lemma 36 (Theorem 12.2 in Schapire and Freund (2012)) Suppose AdaBoost produces the scor-

ing function F̃ when run for T =
√

m rounds with the training set S̃ and space H̃ . Then

Pr

[
riskD

(
¯̃
F
)
≤ inf

F̃ ′:X̃→R

riskD(F̃ ′)+O
(
m−c

)]
≥ 1− 1

m2
,

where the constant C depends only on the data set.
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The proof of Lemma 27 follows immediately from the above lemma and (94).
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